{"title":"效用可加可分市场均衡的复杂性","authors":"X. Chen, Decheng Dai, Ye Du, S. Teng","doi":"10.1145/1807406.1807467","DOIUrl":null,"url":null,"abstract":"We show that the problem of computing an approximate Arrow-Debreu market equilibrium is PPAD-hard, even when all traders use additively separable, piecewise-linear, and concave utility functions. We will also discuss the extension of this result to Fisher's model.","PeriodicalId":142982,"journal":{"name":"Behavioral and Quantitative Game Theory","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the complexity of equilibria in markets with additively separable utilities\",\"authors\":\"X. Chen, Decheng Dai, Ye Du, S. Teng\",\"doi\":\"10.1145/1807406.1807467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the problem of computing an approximate Arrow-Debreu market equilibrium is PPAD-hard, even when all traders use additively separable, piecewise-linear, and concave utility functions. We will also discuss the extension of this result to Fisher's model.\",\"PeriodicalId\":142982,\"journal\":{\"name\":\"Behavioral and Quantitative Game Theory\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Quantitative Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1807406.1807467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Quantitative Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807406.1807467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the complexity of equilibria in markets with additively separable utilities
We show that the problem of computing an approximate Arrow-Debreu market equilibrium is PPAD-hard, even when all traders use additively separable, piecewise-linear, and concave utility functions. We will also discuss the extension of this result to Fisher's model.