{"title":"应用不对称技术检测三维动态PET图像中的病理病变","authors":"Zhe Chen, D. Feng, Weidong (Tom) Cai","doi":"10.1109/ICIAP.2003.1234066","DOIUrl":null,"url":null,"abstract":"This paper describes a segment-based asymmetry feature detection approach for three-dimensional positron emission tomography (PET) brain images to automatically extract pathological lesions. The method consists of three stages: preprocessing, segmentation, and asymmetry detection. The method was tested on simulation and clinical data sets and a per-pixel asymmetry feature detection is experimentally compared with our per-segment approach and the per-segment method is shown to produce fewer false positives and better demarcation in the PET data examples presented.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pathological lesion detection in 3D dynamic PET images using asymmetry\",\"authors\":\"Zhe Chen, D. Feng, Weidong (Tom) Cai\",\"doi\":\"10.1109/ICIAP.2003.1234066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a segment-based asymmetry feature detection approach for three-dimensional positron emission tomography (PET) brain images to automatically extract pathological lesions. The method consists of three stages: preprocessing, segmentation, and asymmetry detection. The method was tested on simulation and clinical data sets and a per-pixel asymmetry feature detection is experimentally compared with our per-segment approach and the per-segment method is shown to produce fewer false positives and better demarcation in the PET data examples presented.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pathological lesion detection in 3D dynamic PET images using asymmetry
This paper describes a segment-based asymmetry feature detection approach for three-dimensional positron emission tomography (PET) brain images to automatically extract pathological lesions. The method consists of three stages: preprocessing, segmentation, and asymmetry detection. The method was tested on simulation and clinical data sets and a per-pixel asymmetry feature detection is experimentally compared with our per-segment approach and the per-segment method is shown to produce fewer false positives and better demarcation in the PET data examples presented.