高能质子辐照聚偏氟乙烯-三氟乙烯56/44 mol.%共聚物的结构和性能变化

S. T. Lau, H. Chan, B. Sundaravel, I. Wilson, C. Choy
{"title":"高能质子辐照聚偏氟乙烯-三氟乙烯56/44 mol.%共聚物的结构和性能变化","authors":"S. T. Lau, H. Chan, B. Sundaravel, I. Wilson, C. Choy","doi":"10.1109/ISE.2002.1042954","DOIUrl":null,"url":null,"abstract":"High-energy proton irradiation with a broad range of dosages has been carried out to investigate the potential for modifying the properties of poly(vinylidene fluoride-trifluoroethylene) 56/44 mol.% copolymer films. The relative permittivity, polarization hysteresis, electric field induced strain, lattice spacing and phase transition behavior of the irradiated copolymer films were studied. With regards to the dielectric and polarization behaviors, the copolymer film can be converted from a typical ferroelectric to a relaxor ferroelectric upon irradiation. This implies that the high-energy protons can break up the coherent polarization domains in the normal ferroelectric copolymer into nano-sized regions. Besides, the XRD data showed that the solid-state phase transition from the polar phase to nonpolar phase is induced in the copolymer during irradiation in which the lattice spacing increases significantly. The electric field induced phase transformation of the nano-sized regions between the polar and nonpolar phase leads to a high electrostrictive strain observed in the irradiated copolymers.","PeriodicalId":331115,"journal":{"name":"Proceedings. 11th International Symposium on Electrets","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural and property changes of high energy proton-irradiated poly(vinylidene fluoride-trifluoroethylene) 56/44 mol.% copolymer\",\"authors\":\"S. T. Lau, H. Chan, B. Sundaravel, I. Wilson, C. Choy\",\"doi\":\"10.1109/ISE.2002.1042954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-energy proton irradiation with a broad range of dosages has been carried out to investigate the potential for modifying the properties of poly(vinylidene fluoride-trifluoroethylene) 56/44 mol.% copolymer films. The relative permittivity, polarization hysteresis, electric field induced strain, lattice spacing and phase transition behavior of the irradiated copolymer films were studied. With regards to the dielectric and polarization behaviors, the copolymer film can be converted from a typical ferroelectric to a relaxor ferroelectric upon irradiation. This implies that the high-energy protons can break up the coherent polarization domains in the normal ferroelectric copolymer into nano-sized regions. Besides, the XRD data showed that the solid-state phase transition from the polar phase to nonpolar phase is induced in the copolymer during irradiation in which the lattice spacing increases significantly. The electric field induced phase transformation of the nano-sized regions between the polar and nonpolar phase leads to a high electrostrictive strain observed in the irradiated copolymers.\",\"PeriodicalId\":331115,\"journal\":{\"name\":\"Proceedings. 11th International Symposium on Electrets\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 11th International Symposium on Electrets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISE.2002.1042954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 11th International Symposium on Electrets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISE.2002.1042954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用大剂量高能质子辐照研究了56/44摩尔%聚偏氟乙烯-三氟乙烯共聚物薄膜的改性潜力。研究了辐照共聚物薄膜的相对介电常数、极化滞后、电场致应变、晶格间距和相变行为。在介电和极化行为方面,共聚物薄膜在辐照下可由典型铁电转变为弛豫铁电。这意味着高能质子可以将普通铁电共聚物中的相干极化域分解成纳米级区域。此外,XRD数据表明,在辐照过程中,共聚物的固相由极性相转变为非极性相,晶格间距明显增大。电场诱导极性和非极性之间的纳米级区域的相变导致在辐照共聚物中观察到高电伸缩应变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and property changes of high energy proton-irradiated poly(vinylidene fluoride-trifluoroethylene) 56/44 mol.% copolymer
High-energy proton irradiation with a broad range of dosages has been carried out to investigate the potential for modifying the properties of poly(vinylidene fluoride-trifluoroethylene) 56/44 mol.% copolymer films. The relative permittivity, polarization hysteresis, electric field induced strain, lattice spacing and phase transition behavior of the irradiated copolymer films were studied. With regards to the dielectric and polarization behaviors, the copolymer film can be converted from a typical ferroelectric to a relaxor ferroelectric upon irradiation. This implies that the high-energy protons can break up the coherent polarization domains in the normal ferroelectric copolymer into nano-sized regions. Besides, the XRD data showed that the solid-state phase transition from the polar phase to nonpolar phase is induced in the copolymer during irradiation in which the lattice spacing increases significantly. The electric field induced phase transformation of the nano-sized regions between the polar and nonpolar phase leads to a high electrostrictive strain observed in the irradiated copolymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信