Radon-Nikodym机器学习并行化研究

A. Bobyl, Vadim V. Davydov, V. Malyshkin
{"title":"Radon-Nikodym机器学习并行化研究","authors":"A. Bobyl, Vadim V. Davydov, V. Malyshkin","doi":"10.1145/3440749.3442604","DOIUrl":null,"url":null,"abstract":"A novel Radon–Nikodym approach to machine learning (ML) is developed, implemented numerically, tested on various datasets, and it’s parallelization is discussed. It consists in building a “wavefunction” ψ(x), a linear function on input attributes x then constructing a classificator of the form ⟨ψ2f⟩/⟨ψ2⟩. The solution is obtained from a generalized eigenproblem |f|ψ[i]⟩ = λ[i]|ψ[i]⟩ with left– and right– hand side matrices calculated from the input dataset. A solution to classification problem (predict f on an unseen x) is found without using a norm testing how predicted f differs from the one observed. Possible outcomes and their probabilities are obtained separately using the Lebesgue quadrature technique, this makes the method robust to input data with outliers, spikes, etc. A remarkable feature is the knowledge of the invariant group (what input attributes transforms do not change the solution). Radon–Nikodym approach is typically slower than the other methods used, this is the cost of being a “norm–free”. A parallel implementation is expected to improve this deficiency.","PeriodicalId":344578,"journal":{"name":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On The Radon–Nikodym Machine Learning Parallelization\",\"authors\":\"A. Bobyl, Vadim V. Davydov, V. Malyshkin\",\"doi\":\"10.1145/3440749.3442604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Radon–Nikodym approach to machine learning (ML) is developed, implemented numerically, tested on various datasets, and it’s parallelization is discussed. It consists in building a “wavefunction” ψ(x), a linear function on input attributes x then constructing a classificator of the form ⟨ψ2f⟩/⟨ψ2⟩. The solution is obtained from a generalized eigenproblem |f|ψ[i]⟩ = λ[i]|ψ[i]⟩ with left– and right– hand side matrices calculated from the input dataset. A solution to classification problem (predict f on an unseen x) is found without using a norm testing how predicted f differs from the one observed. Possible outcomes and their probabilities are obtained separately using the Lebesgue quadrature technique, this makes the method robust to input data with outliers, spikes, etc. A remarkable feature is the knowledge of the invariant group (what input attributes transforms do not change the solution). Radon–Nikodym approach is typically slower than the other methods used, this is the cost of being a “norm–free”. A parallel implementation is expected to improve this deficiency.\",\"PeriodicalId\":344578,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Future Networks and Distributed Systems\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Future Networks and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440749.3442604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440749.3442604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的Radon-Nikodym机器学习方法,并在不同的数据集上进行了数值实现和测试,讨论了该方法的并行化问题。它包括建立一个“波函数”ψ(x),一个输入属性x上的线性函数,然后构造一个形式为⟨ψ2f⟩/⟨ψ2⟩的分类器。解是由一个广义的特征问题|f|ψ[i]⟩= λ[i]|ψ[i]⟩得到的,它具有从输入数据集计算的左边和右边矩阵。在不使用范数测试预测f与观察到的f的差异的情况下,找到了分类问题(在未知x上预测f)的解决方案。使用勒贝格正交技术分别获得可能的结果及其概率,这使得该方法对具有异常值,峰值等的输入数据具有鲁棒性。一个显著的特性是不变量组的知识(输入属性的转换不会改变解决方案)。Radon-Nikodym方法通常比其他使用的方法慢,这是“无规范”的代价。并行实现有望改善这一缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On The Radon–Nikodym Machine Learning Parallelization
A novel Radon–Nikodym approach to machine learning (ML) is developed, implemented numerically, tested on various datasets, and it’s parallelization is discussed. It consists in building a “wavefunction” ψ(x), a linear function on input attributes x then constructing a classificator of the form ⟨ψ2f⟩/⟨ψ2⟩. The solution is obtained from a generalized eigenproblem |f|ψ[i]⟩ = λ[i]|ψ[i]⟩ with left– and right– hand side matrices calculated from the input dataset. A solution to classification problem (predict f on an unseen x) is found without using a norm testing how predicted f differs from the one observed. Possible outcomes and their probabilities are obtained separately using the Lebesgue quadrature technique, this makes the method robust to input data with outliers, spikes, etc. A remarkable feature is the knowledge of the invariant group (what input attributes transforms do not change the solution). Radon–Nikodym approach is typically slower than the other methods used, this is the cost of being a “norm–free”. A parallel implementation is expected to improve this deficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信