成功

A. Duncan, M. Janssen
{"title":"成功","authors":"A. Duncan, M. Janssen","doi":"10.1093/oso/9780198845478.003.0006","DOIUrl":null,"url":null,"abstract":"The set of principles formulated in 1915-1918, and now collectively called the old quantum theory, were successfully applied to a number of problems in atomic and X-ray spectroscopy. The three most notable successes are all associated with the Munich school headed by Arnold Sommerfeld. First, there was the derivation of a relativistic fine-structure formula which predicted splittings of stationary state energies for orbits of varying eccentricity at a given principal quantum number. These splittings were empirically verified by Paschen for ionized helium, and constituted the first quantitative confirmation of the special relativistic mechanics introduced by Einstein a decade earlier. The relativistic fine-structure formula was also applied successfully to the splitting of lines in the X-ray spectra of atoms of widely varying atomic number. Finally, the principles of the old quantum theory (in particular, the use of Schwarzschild quantization in combination with Hamilton-Jacobi methods of classical mechanics) were successfully applied to explain the first order splitting spectral lines in the presence of an external electric field (Stark effect).","PeriodicalId":192673,"journal":{"name":"Constructing Quantum Mechanics","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Successes\",\"authors\":\"A. Duncan, M. Janssen\",\"doi\":\"10.1093/oso/9780198845478.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The set of principles formulated in 1915-1918, and now collectively called the old quantum theory, were successfully applied to a number of problems in atomic and X-ray spectroscopy. The three most notable successes are all associated with the Munich school headed by Arnold Sommerfeld. First, there was the derivation of a relativistic fine-structure formula which predicted splittings of stationary state energies for orbits of varying eccentricity at a given principal quantum number. These splittings were empirically verified by Paschen for ionized helium, and constituted the first quantitative confirmation of the special relativistic mechanics introduced by Einstein a decade earlier. The relativistic fine-structure formula was also applied successfully to the splitting of lines in the X-ray spectra of atoms of widely varying atomic number. Finally, the principles of the old quantum theory (in particular, the use of Schwarzschild quantization in combination with Hamilton-Jacobi methods of classical mechanics) were successfully applied to explain the first order splitting spectral lines in the presence of an external electric field (Stark effect).\",\"PeriodicalId\":192673,\"journal\":{\"name\":\"Constructing Quantum Mechanics\",\"volume\":\"452 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructing Quantum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198845478.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructing Quantum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198845478.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

1915年至1918年制定的一套原理,现在统称为旧量子理论,成功地应用于原子和x射线光谱学中的许多问题。最引人注目的三个成功案例都与阿诺德•萨默菲尔德(Arnold Sommerfeld)领导的慕尼黑学校有关。首先,推导了一个相对论精细结构公式,该公式预测了在给定主量子数下,不同偏心率轨道的稳态能量分裂。这些分裂由Paschen对电离氦进行了经验验证,并构成了爱因斯坦十年前引入的狭义相对论力学的第一个定量证实。相对论精细结构公式也成功地应用于原子序数变化很大的原子的x射线谱线的分裂。最后,旧量子理论的原理(特别是史瓦西量子化与经典力学的哈密顿-雅可比方法相结合的使用)被成功地应用于解释存在外电场下的一阶分裂谱线(斯塔克效应)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Successes
The set of principles formulated in 1915-1918, and now collectively called the old quantum theory, were successfully applied to a number of problems in atomic and X-ray spectroscopy. The three most notable successes are all associated with the Munich school headed by Arnold Sommerfeld. First, there was the derivation of a relativistic fine-structure formula which predicted splittings of stationary state energies for orbits of varying eccentricity at a given principal quantum number. These splittings were empirically verified by Paschen for ionized helium, and constituted the first quantitative confirmation of the special relativistic mechanics introduced by Einstein a decade earlier. The relativistic fine-structure formula was also applied successfully to the splitting of lines in the X-ray spectra of atoms of widely varying atomic number. Finally, the principles of the old quantum theory (in particular, the use of Schwarzschild quantization in combination with Hamilton-Jacobi methods of classical mechanics) were successfully applied to explain the first order splitting spectral lines in the presence of an external electric field (Stark effect).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信