边缘复杂事件处理的在线学习与概念漂移研究

João Alexandre Neto, Jorge C. B. Fonseca, Kiev Gama
{"title":"边缘复杂事件处理的在线学习与概念漂移研究","authors":"João Alexandre Neto, Jorge C. B. Fonseca, Kiev Gama","doi":"10.1109/SEC50012.2020.00024","DOIUrl":null,"url":null,"abstract":"Edge computing has enabled the usage of Complex Event Processing (CEP) closer to data sources, delivering on time response to critical applications. One of the challenges in this context is how to support this processing and keep an optimal resource usage (e.g., Memory, CPU). State-of-art solutions have suggested computational offloading techniques to distribute processing across the nodes and reach such optimization. Most of them take the offloading decision through predefined policies or adaptive solutions with the usage of machine learning algorithms. However, these techniques are not able to incrementally learn without any historical data or to adapt to changes on statistical data properties. This research aims to use online learning and concept drift detection on offloading decision to optimize resource usage and keep the learning model up-to-date. The feasibility of our approach was noticed through preliminary evaluations.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"36 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Online Learning and Concept Drift for Offloading Complex Event Processing in the Edge\",\"authors\":\"João Alexandre Neto, Jorge C. B. Fonseca, Kiev Gama\",\"doi\":\"10.1109/SEC50012.2020.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing has enabled the usage of Complex Event Processing (CEP) closer to data sources, delivering on time response to critical applications. One of the challenges in this context is how to support this processing and keep an optimal resource usage (e.g., Memory, CPU). State-of-art solutions have suggested computational offloading techniques to distribute processing across the nodes and reach such optimization. Most of them take the offloading decision through predefined policies or adaptive solutions with the usage of machine learning algorithms. However, these techniques are not able to incrementally learn without any historical data or to adapt to changes on statistical data properties. This research aims to use online learning and concept drift detection on offloading decision to optimize resource usage and keep the learning model up-to-date. The feasibility of our approach was noticed through preliminary evaluations.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"36 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

边缘计算使复杂事件处理(CEP)的使用更接近数据源,为关键应用程序提供及时的响应。在这种情况下的挑战之一是如何支持这种处理并保持最佳的资源使用(例如,内存、CPU)。最先进的解决方案建议使用计算卸载技术来跨节点分配处理并达到这种优化。它们大多通过预定义的策略或使用机器学习算法的自适应解决方案来进行卸载决策。然而,这些技术不能在没有任何历史数据的情况下进行增量学习,也不能适应统计数据属性的变化。本研究旨在利用在线学习和概念漂移检测进行卸载决策,以优化资源使用并使学习模型保持最新。通过初步评估,我们的方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Online Learning and Concept Drift for Offloading Complex Event Processing in the Edge
Edge computing has enabled the usage of Complex Event Processing (CEP) closer to data sources, delivering on time response to critical applications. One of the challenges in this context is how to support this processing and keep an optimal resource usage (e.g., Memory, CPU). State-of-art solutions have suggested computational offloading techniques to distribute processing across the nodes and reach such optimization. Most of them take the offloading decision through predefined policies or adaptive solutions with the usage of machine learning algorithms. However, these techniques are not able to incrementally learn without any historical data or to adapt to changes on statistical data properties. This research aims to use online learning and concept drift detection on offloading decision to optimize resource usage and keep the learning model up-to-date. The feasibility of our approach was noticed through preliminary evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信