学习文本分类的位置判别索引

Jiani Hu, Weihong Deng, Jun Guo, Weiran Xu
{"title":"学习文本分类的位置判别索引","authors":"Jiani Hu, Weihong Deng, Jun Guo, Weiran Xu","doi":"10.1109/FSKD.2007.383","DOIUrl":null,"url":null,"abstract":"This paper introduces a locality discriminating indexing (LDI) algorithm for text categorization. The LDI algorithm offers a manifold way of discriminant analysis. Based on the hypothesis that samples from different classes reside in class-specific manifold structures, the algorithm depicts the manifold structures by a nearest-native graph and a invader graphs. And a new locality discriminant criterion is proposed, which best preserves the within-class local structures while suppresses the between-class overlap. Using the notion of the Laplacian of the graphs, the LDI algorithm finds the optimal linear transformation by solving the generalized eigenvalue problem. The feasibility of the LDI algorithm has been successfully tested in text categorization using 20NG and Reuters-21578 databases. Experiment results show LDI is an effective technique for document modeling and representations for classification.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Locality Discriminating Indexing for Text Categorization\",\"authors\":\"Jiani Hu, Weihong Deng, Jun Guo, Weiran Xu\",\"doi\":\"10.1109/FSKD.2007.383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a locality discriminating indexing (LDI) algorithm for text categorization. The LDI algorithm offers a manifold way of discriminant analysis. Based on the hypothesis that samples from different classes reside in class-specific manifold structures, the algorithm depicts the manifold structures by a nearest-native graph and a invader graphs. And a new locality discriminant criterion is proposed, which best preserves the within-class local structures while suppresses the between-class overlap. Using the notion of the Laplacian of the graphs, the LDI algorithm finds the optimal linear transformation by solving the generalized eigenvalue problem. The feasibility of the LDI algorithm has been successfully tested in text categorization using 20NG and Reuters-21578 databases. Experiment results show LDI is an effective technique for document modeling and representations for classification.\",\"PeriodicalId\":201883,\"journal\":{\"name\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2007.383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种用于文本分类的局部判别索引(LDI)算法。LDI算法提供了一种多元的判别分析方法。基于不同类的样本存在于特定类的流形结构的假设,该算法通过最近邻图和入侵图来描述流形结构。在此基础上,提出了一种新的局部判别准则,该准则在最大程度上保留了类内局部结构,同时抑制了类间重叠。LDI算法利用图的拉普拉斯算子的概念,通过求解广义特征值问题找到最优的线性变换。LDI算法的可行性已经在使用20NG和Reuters-21578数据库的文本分类中成功测试。实验结果表明,LDI是一种有效的文档建模和分类表示技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Locality Discriminating Indexing for Text Categorization
This paper introduces a locality discriminating indexing (LDI) algorithm for text categorization. The LDI algorithm offers a manifold way of discriminant analysis. Based on the hypothesis that samples from different classes reside in class-specific manifold structures, the algorithm depicts the manifold structures by a nearest-native graph and a invader graphs. And a new locality discriminant criterion is proposed, which best preserves the within-class local structures while suppresses the between-class overlap. Using the notion of the Laplacian of the graphs, the LDI algorithm finds the optimal linear transformation by solving the generalized eigenvalue problem. The feasibility of the LDI algorithm has been successfully tested in text categorization using 20NG and Reuters-21578 databases. Experiment results show LDI is an effective technique for document modeling and representations for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信