基于遗传算法的CT图像裂缝自动检测

Lin-Yu Tseng, Li-Chin Huang
{"title":"基于遗传算法的CT图像裂缝自动检测","authors":"Lin-Yu Tseng, Li-Chin Huang","doi":"10.1109/ICMLC.2010.5580871","DOIUrl":null,"url":null,"abstract":"Lung cancer is one of the most frequently occurring cancer and has a very low five-year survival rate. Computer-aided diagnosis (CAD) helps reducing the burden of radiologists and improving the accuracy of abnormality detection during CT image interpretations. Owing to rapid development of the scanner technology, the volume of medical imaging data is becoming huger and huger. Automated segmentations of the target organ region are always required by the CAD systems. Although the analysis of lung fissures provides important information for treatment, it is still a challenge to extract fissures automatically based on the CT values because the appearance of lung fissures is very fuzzy and indefinite. Since the oblique fissures can be visualized more easily among other fissures on the chest CT images, they are used to check the exact localization of the lesions. In this paper, we propose a fully automatic fissure detection method based on the genetic algorithm to identify the oblique fissures. The accurate rates of identifying the oblique fissures in the right lung and the left lung are 97% and 86%, respectively when the method was tested on 87 slices.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic fissure detection in CT images based on the genetic algorithm\",\"authors\":\"Lin-Yu Tseng, Li-Chin Huang\",\"doi\":\"10.1109/ICMLC.2010.5580871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is one of the most frequently occurring cancer and has a very low five-year survival rate. Computer-aided diagnosis (CAD) helps reducing the burden of radiologists and improving the accuracy of abnormality detection during CT image interpretations. Owing to rapid development of the scanner technology, the volume of medical imaging data is becoming huger and huger. Automated segmentations of the target organ region are always required by the CAD systems. Although the analysis of lung fissures provides important information for treatment, it is still a challenge to extract fissures automatically based on the CT values because the appearance of lung fissures is very fuzzy and indefinite. Since the oblique fissures can be visualized more easily among other fissures on the chest CT images, they are used to check the exact localization of the lesions. In this paper, we propose a fully automatic fissure detection method based on the genetic algorithm to identify the oblique fissures. The accurate rates of identifying the oblique fissures in the right lung and the left lung are 97% and 86%, respectively when the method was tested on 87 slices.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

肺癌是最常见的癌症之一,其5年生存率非常低。计算机辅助诊断(CAD)有助于减轻放射科医生的负担,提高CT图像解释过程中异常检测的准确性。由于扫描仪技术的飞速发展,医学影像数据的量越来越大。CAD系统总是要求对目标器官区域进行自动分割。虽然肺裂隙的分析为治疗提供了重要的信息,但由于肺裂隙的外观非常模糊和不确定,因此基于CT值自动提取肺裂隙仍然是一个挑战。由于在胸部CT图像中,斜裂在其他裂缝中更容易被发现,因此斜裂被用来检查病变的确切定位。本文提出了一种基于遗传算法的斜裂缝全自动检测方法。在87张肺切片上,对右肺斜裂和左肺斜裂的识别准确率分别为97%和86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic fissure detection in CT images based on the genetic algorithm
Lung cancer is one of the most frequently occurring cancer and has a very low five-year survival rate. Computer-aided diagnosis (CAD) helps reducing the burden of radiologists and improving the accuracy of abnormality detection during CT image interpretations. Owing to rapid development of the scanner technology, the volume of medical imaging data is becoming huger and huger. Automated segmentations of the target organ region are always required by the CAD systems. Although the analysis of lung fissures provides important information for treatment, it is still a challenge to extract fissures automatically based on the CT values because the appearance of lung fissures is very fuzzy and indefinite. Since the oblique fissures can be visualized more easily among other fissures on the chest CT images, they are used to check the exact localization of the lesions. In this paper, we propose a fully automatic fissure detection method based on the genetic algorithm to identify the oblique fissures. The accurate rates of identifying the oblique fissures in the right lung and the left lung are 97% and 86%, respectively when the method was tested on 87 slices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信