哈萨克语语音的Wav2vec2模型微调:基于有限语料库的研究

Kairatuly Bauyrzhan, Mansurova Madina, Ospan Assel
{"title":"哈萨克语语音的Wav2vec2模型微调:基于有限语料库的研究","authors":"Kairatuly Bauyrzhan, Mansurova Madina, Ospan Assel","doi":"10.1109/SIST58284.2023.10223504","DOIUrl":null,"url":null,"abstract":"In this study, we developed a model for automatic recognition of Kazakh speech by fine-tuning the XLSR-Wav2Vec2 pre-trained model to a corpus of Kazakh speech. Our results show that fine-tuning the wav2vec2 model on a small corpus of Kazakh speech allows a significant increase in recognition accuracy. However, larger datasets are needed to further evaluate the effectiveness of this approach. The results of this study contribute to ongoing efforts to improve speech recognition technology for low-resource languages such as Kazakh.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"50 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Tuning the Wav2vec2 Model for Kazakh Speech: A Study on a Limited Corpus\",\"authors\":\"Kairatuly Bauyrzhan, Mansurova Madina, Ospan Assel\",\"doi\":\"10.1109/SIST58284.2023.10223504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we developed a model for automatic recognition of Kazakh speech by fine-tuning the XLSR-Wav2Vec2 pre-trained model to a corpus of Kazakh speech. Our results show that fine-tuning the wav2vec2 model on a small corpus of Kazakh speech allows a significant increase in recognition accuracy. However, larger datasets are needed to further evaluate the effectiveness of this approach. The results of this study contribute to ongoing efforts to improve speech recognition technology for low-resource languages such as Kazakh.\",\"PeriodicalId\":367406,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"volume\":\"50 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIST58284.2023.10223504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们通过对XLSR-Wav2Vec2预训练模型对哈萨克语语音语料库进行微调,开发了一个自动识别哈萨克语语音的模型。我们的结果表明,在一个小的哈萨克语语料库上微调wav2vec2模型可以显著提高识别精度。然而,需要更大的数据集来进一步评估这种方法的有效性。这项研究的结果有助于不断努力提高语音识别技术的低资源语言,如哈萨克语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Tuning the Wav2vec2 Model for Kazakh Speech: A Study on a Limited Corpus
In this study, we developed a model for automatic recognition of Kazakh speech by fine-tuning the XLSR-Wav2Vec2 pre-trained model to a corpus of Kazakh speech. Our results show that fine-tuning the wav2vec2 model on a small corpus of Kazakh speech allows a significant increase in recognition accuracy. However, larger datasets are needed to further evaluate the effectiveness of this approach. The results of this study contribute to ongoing efforts to improve speech recognition technology for low-resource languages such as Kazakh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信