基于免疫进化算法的混合核参数选择方法及其在ids中的应用

Chun Yang, Haidong Yang, F. Deng
{"title":"基于免疫进化算法的混合核参数选择方法及其在ids中的应用","authors":"Chun Yang, Haidong Yang, F. Deng","doi":"10.1109/CIS.2007.188","DOIUrl":null,"url":null,"abstract":"Supervised anomaly intrusion detection systems (IDSs) based on Support Vector Machines (SVMs) classification technique have attracted much more attention today. In these systems, the characteristics of kernels have great in- fluence on learning and prediction results for IDSs. How- ever, selecting feasible parameters can be time-consuming as the number of parameters and the size of the dataset in- crease. In this paper, an immune evolutionary based ker- nel parameter selection approach is proposed. Through the simulation of the denial of service attacks in mobile ad-hoc networks (MANETs), the result dataset is used for compar- ing the prediction performance using different types of ker- nels. At the same time, the parameter selection efficiency of the proposed approach is also compared with the differen- tial evolution algorithm.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Parameter Selection Approach for Mixtures of Kernels Using Immune Evolutionary Algorithm and its Application to IDSs\",\"authors\":\"Chun Yang, Haidong Yang, F. Deng\",\"doi\":\"10.1109/CIS.2007.188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised anomaly intrusion detection systems (IDSs) based on Support Vector Machines (SVMs) classification technique have attracted much more attention today. In these systems, the characteristics of kernels have great in- fluence on learning and prediction results for IDSs. How- ever, selecting feasible parameters can be time-consuming as the number of parameters and the size of the dataset in- crease. In this paper, an immune evolutionary based ker- nel parameter selection approach is proposed. Through the simulation of the denial of service attacks in mobile ad-hoc networks (MANETs), the result dataset is used for compar- ing the prediction performance using different types of ker- nels. At the same time, the parameter selection efficiency of the proposed approach is also compared with the differen- tial evolution algorithm.\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于支持向量机(svm)分类技术的监督异常入侵检测系统(ids)受到了越来越多的关注。在这些系统中,核的特性对ids的学习和预测结果有很大的影响。然而,随着参数数量和数据集大小的增加,选择可行的参数会耗费大量时间。提出了一种基于免疫进化的核参数选择方法。通过对移动自组织网络(manet)中拒绝服务攻击的仿真,比较了不同类型内核的预测性能。同时,将该方法的参数选择效率与差分进化算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parameter Selection Approach for Mixtures of Kernels Using Immune Evolutionary Algorithm and its Application to IDSs
Supervised anomaly intrusion detection systems (IDSs) based on Support Vector Machines (SVMs) classification technique have attracted much more attention today. In these systems, the characteristics of kernels have great in- fluence on learning and prediction results for IDSs. How- ever, selecting feasible parameters can be time-consuming as the number of parameters and the size of the dataset in- crease. In this paper, an immune evolutionary based ker- nel parameter selection approach is proposed. Through the simulation of the denial of service attacks in mobile ad-hoc networks (MANETs), the result dataset is used for compar- ing the prediction performance using different types of ker- nels. At the same time, the parameter selection efficiency of the proposed approach is also compared with the differen- tial evolution algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信