动态线性系统前无记忆非线性的预失真器设计

Changsoo Eun, E. Powers
{"title":"动态线性系统前无记忆非线性的预失真器设计","authors":"Changsoo Eun, E. Powers","doi":"10.1109/GLOCOM.1995.500342","DOIUrl":null,"url":null,"abstract":"We propose a data predistorter design scheme for a memory-less nonlinearity which is preceded by a linear system with memory. This system configuration is often found in telecommunications. The predistorter technique is useful since the compensation of the nonlinearity of high-power amplifiers allows the efficient use of the power resource and bandwidth, while maintaining the prescribed signal spectral distribution. We use either a modified indirect learning architecture or a stochastic gradient method for training the predistorters. As a predistorter structure, we use a Volterra series model or a time-delayed neural network. We apply our approach to the compensation of various nonlinear systems including TWT-type nonlinearities. The results show that our approach is very effective in compensating the memory-less nonlinearity preceded by a linear system with memory. We show the results for nonlinear systems with a TWT-type nonlinearity.","PeriodicalId":152724,"journal":{"name":"Proceedings of GLOBECOM '95","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"A predistorter design for a memory-less nonlinearity preceded by a dynamic linear system\",\"authors\":\"Changsoo Eun, E. Powers\",\"doi\":\"10.1109/GLOCOM.1995.500342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a data predistorter design scheme for a memory-less nonlinearity which is preceded by a linear system with memory. This system configuration is often found in telecommunications. The predistorter technique is useful since the compensation of the nonlinearity of high-power amplifiers allows the efficient use of the power resource and bandwidth, while maintaining the prescribed signal spectral distribution. We use either a modified indirect learning architecture or a stochastic gradient method for training the predistorters. As a predistorter structure, we use a Volterra series model or a time-delayed neural network. We apply our approach to the compensation of various nonlinear systems including TWT-type nonlinearities. The results show that our approach is very effective in compensating the memory-less nonlinearity preceded by a linear system with memory. We show the results for nonlinear systems with a TWT-type nonlinearity.\",\"PeriodicalId\":152724,\"journal\":{\"name\":\"Proceedings of GLOBECOM '95\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of GLOBECOM '95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.1995.500342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of GLOBECOM '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.1995.500342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

我们提出了一种数据预失真器的设计方案,用于无记忆非线性系统的预失真设计。这种系统配置经常出现在电信系统中。预失真器技术是有用的,因为高功率放大器的非线性补偿允许有效地利用功率资源和带宽,同时保持规定的信号频谱分布。我们使用改进的间接学习架构或随机梯度方法来训练预失真器。作为预失真器结构,我们使用Volterra系列模型或时滞神经网络。我们将此方法应用于各种非线性系统的补偿,包括行波管型非线性系统。结果表明,该方法可以有效地补偿由有内存的线性系统引起的无内存非线性。我们展示了具有行波管型非线性的非线性系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predistorter design for a memory-less nonlinearity preceded by a dynamic linear system
We propose a data predistorter design scheme for a memory-less nonlinearity which is preceded by a linear system with memory. This system configuration is often found in telecommunications. The predistorter technique is useful since the compensation of the nonlinearity of high-power amplifiers allows the efficient use of the power resource and bandwidth, while maintaining the prescribed signal spectral distribution. We use either a modified indirect learning architecture or a stochastic gradient method for training the predistorters. As a predistorter structure, we use a Volterra series model or a time-delayed neural network. We apply our approach to the compensation of various nonlinear systems including TWT-type nonlinearities. The results show that our approach is very effective in compensating the memory-less nonlinearity preceded by a linear system with memory. We show the results for nonlinear systems with a TWT-type nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信