一种用于图像处理管道优化的有效融合和瓦片大小模型

Abhinav Jangda, Uday Bondhugula
{"title":"一种用于图像处理管道优化的有效融合和瓦片大小模型","authors":"Abhinav Jangda, Uday Bondhugula","doi":"10.1145/3178487.3178507","DOIUrl":null,"url":null,"abstract":"Effective models for fusion of loop nests continue to remain a challenge in both general-purpose and domain-specific language (DSL) compilers. The difficulty often arises from the combinatorial explosion of grouping choices and their interaction with parallelism and locality. This paper presents a new fusion algorithm for high-performance domain-specific compilers for image processing pipelines. The fusion algorithm is driven by dynamic programming and explores spaces of fusion possibilities not covered by previous approaches, and is driven by a cost function more concrete and precise in capturing optimization criteria than prior approaches. The fusion model is particularly tailored to the transformation and optimization sequence applied by PolyMage and Halide, two recent DSLs for image processing pipelines. Our model-driven technique when implemented in PolyMage provides significant improvements (up to 4.32X) over PolyMage's approach (which uses auto-tuning to aid its model), and over Halide's automatic approach (by up to 2.46X) on two state-of-the-art shared-memory multicore architectures.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"An effective fusion and tile size model for optimizing image processing pipelines\",\"authors\":\"Abhinav Jangda, Uday Bondhugula\",\"doi\":\"10.1145/3178487.3178507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective models for fusion of loop nests continue to remain a challenge in both general-purpose and domain-specific language (DSL) compilers. The difficulty often arises from the combinatorial explosion of grouping choices and their interaction with parallelism and locality. This paper presents a new fusion algorithm for high-performance domain-specific compilers for image processing pipelines. The fusion algorithm is driven by dynamic programming and explores spaces of fusion possibilities not covered by previous approaches, and is driven by a cost function more concrete and precise in capturing optimization criteria than prior approaches. The fusion model is particularly tailored to the transformation and optimization sequence applied by PolyMage and Halide, two recent DSLs for image processing pipelines. Our model-driven technique when implemented in PolyMage provides significant improvements (up to 4.32X) over PolyMage's approach (which uses auto-tuning to aid its model), and over Halide's automatic approach (by up to 2.46X) on two state-of-the-art shared-memory multicore architectures.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在通用和领域特定语言(DSL)编译器中,有效的循环巢融合模型仍然是一个挑战。困难通常来自于分组选择的组合爆炸以及它们与并行性和局部性的相互作用。提出了一种面向图像处理管道的高性能领域编译器的融合算法。该融合算法由动态规划驱动,探索以前方法未涵盖的融合可能性空间,并由成本函数驱动,在捕获优化标准方面比以前的方法更具体和精确。融合模型特别适合PolyMage和Halide应用的转换和优化序列,这是两种最新的用于图像处理管道的dsl。我们的模型驱动技术在PolyMage中实现时,在两个最先进的共享内存多核架构上,比PolyMage的方法(使用自动调整来帮助其模型)和Halide的自动方法(高达2.46X)提供了显著的改进(高达4.32X)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective fusion and tile size model for optimizing image processing pipelines
Effective models for fusion of loop nests continue to remain a challenge in both general-purpose and domain-specific language (DSL) compilers. The difficulty often arises from the combinatorial explosion of grouping choices and their interaction with parallelism and locality. This paper presents a new fusion algorithm for high-performance domain-specific compilers for image processing pipelines. The fusion algorithm is driven by dynamic programming and explores spaces of fusion possibilities not covered by previous approaches, and is driven by a cost function more concrete and precise in capturing optimization criteria than prior approaches. The fusion model is particularly tailored to the transformation and optimization sequence applied by PolyMage and Halide, two recent DSLs for image processing pipelines. Our model-driven technique when implemented in PolyMage provides significant improvements (up to 4.32X) over PolyMage's approach (which uses auto-tuning to aid its model), and over Halide's automatic approach (by up to 2.46X) on two state-of-the-art shared-memory multicore architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信