使用菲尔德勒嵌入学习场景语义

Jingen Liu, Saad Ali
{"title":"使用菲尔德勒嵌入学习场景语义","authors":"Jingen Liu, Saad Ali","doi":"10.1109/ICPR.2010.885","DOIUrl":null,"url":null,"abstract":"We propose a framework to learn scene semantics from surveillance videos. Using the learnt scene semantics, a video analyst can efficiently and effectively retrieve the hidden semantic relationship between homogeneous and heterogeneous entities existing in the surveillance system. For learning scene semantics, the algorithm treats different entities as nodes in a graph, where weighted edges between the nodes represent the \"initial\" strength of the relationship between entities. The graph is then embedded into a k-dimensional space by Fiedler Embedding.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"624 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Scene Semantics Using Fiedler Embedding\",\"authors\":\"Jingen Liu, Saad Ali\",\"doi\":\"10.1109/ICPR.2010.885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework to learn scene semantics from surveillance videos. Using the learnt scene semantics, a video analyst can efficiently and effectively retrieve the hidden semantic relationship between homogeneous and heterogeneous entities existing in the surveillance system. For learning scene semantics, the algorithm treats different entities as nodes in a graph, where weighted edges between the nodes represent the \\\"initial\\\" strength of the relationship between entities. The graph is then embedded into a k-dimensional space by Fiedler Embedding.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"624 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个从监控视频中学习场景语义的框架。利用学习到的场景语义,视频分析人员可以高效有效地检索监控系统中存在的同质和异构实体之间的隐藏语义关系。对于学习场景语义,该算法将不同的实体视为图中的节点,节点之间的加权边表示实体之间关系的“初始”强度。然后通过费德勒嵌入将图嵌入到k维空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Scene Semantics Using Fiedler Embedding
We propose a framework to learn scene semantics from surveillance videos. Using the learnt scene semantics, a video analyst can efficiently and effectively retrieve the hidden semantic relationship between homogeneous and heterogeneous entities existing in the surveillance system. For learning scene semantics, the algorithm treats different entities as nodes in a graph, where weighted edges between the nodes represent the "initial" strength of the relationship between entities. The graph is then embedded into a k-dimensional space by Fiedler Embedding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信