网络主题模型及其在专家查找中的应用

Jia Zeng, W. K. Cheung, Chun-hung Li, Jiming Liu
{"title":"网络主题模型及其在专家查找中的应用","authors":"Jia Zeng, W. K. Cheung, Chun-hung Li, Jiming Liu","doi":"10.1109/WI-IAT.2010.20","DOIUrl":null,"url":null,"abstract":"This paper presents the coauthor network topic (CNT) model constructed based on Markov random fields (MRFs) with higher-order cliques. Regularized by the complex coauthor network structures, the CNT can simultaneously learn topic distributions as well as expertise of authors from large document collections. Besides modeling the pairwise relations, we model also higher-order coauthor relations and investigate their effects on topic and expertise modeling. We derive efficient inference and learning algorithms from the Gibbs sampling procedure. To confirm the effectiveness, we apply the CNT to the expert finding problem on a DBLP corpus of titles from six different computer science conferences. Experiments show that the higher-order relations among coauthors can improve the topic and expertise modeling performance over the case with pairwise relations, and thus can find more relevant experts given a query topic or document.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Coauthor Network Topic Models with Application to Expert Finding\",\"authors\":\"Jia Zeng, W. K. Cheung, Chun-hung Li, Jiming Liu\",\"doi\":\"10.1109/WI-IAT.2010.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the coauthor network topic (CNT) model constructed based on Markov random fields (MRFs) with higher-order cliques. Regularized by the complex coauthor network structures, the CNT can simultaneously learn topic distributions as well as expertise of authors from large document collections. Besides modeling the pairwise relations, we model also higher-order coauthor relations and investigate their effects on topic and expertise modeling. We derive efficient inference and learning algorithms from the Gibbs sampling procedure. To confirm the effectiveness, we apply the CNT to the expert finding problem on a DBLP corpus of titles from six different computer science conferences. Experiments show that the higher-order relations among coauthors can improve the topic and expertise modeling performance over the case with pairwise relations, and thus can find more relevant experts given a query topic or document.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种基于高阶团的马尔科夫随机场(mrf)的合著者网络主题(CNT)模型。通过复杂的合著者网络结构进行正则化,CNT可以同时从大型文档集合中学习主题分布以及作者的专业知识。除了对两两关系进行建模外,我们还对高阶合著者关系进行了建模,并研究了它们对主题和专业知识建模的影响。我们从Gibbs抽样过程中得到了有效的推理和学习算法。为了验证该方法的有效性,我们将碳纳米管应用于专家在六个不同计算机科学会议的DBLP语料库上发现问题。实验表明,相对于具有两两关系的案例,作者间的高阶关系可以提高主题和专家建模的性能,从而可以在给定的查询主题或文档中找到更多相关的专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coauthor Network Topic Models with Application to Expert Finding
This paper presents the coauthor network topic (CNT) model constructed based on Markov random fields (MRFs) with higher-order cliques. Regularized by the complex coauthor network structures, the CNT can simultaneously learn topic distributions as well as expertise of authors from large document collections. Besides modeling the pairwise relations, we model also higher-order coauthor relations and investigate their effects on topic and expertise modeling. We derive efficient inference and learning algorithms from the Gibbs sampling procedure. To confirm the effectiveness, we apply the CNT to the expert finding problem on a DBLP corpus of titles from six different computer science conferences. Experiments show that the higher-order relations among coauthors can improve the topic and expertise modeling performance over the case with pairwise relations, and thus can find more relevant experts given a query topic or document.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信