量子涨落和洛伦兹方程

S. Sarkar, J. Satchell, H. Carmichael
{"title":"量子涨落和洛伦兹方程","authors":"S. Sarkar, J. Satchell, H. Carmichael","doi":"10.1088/0305-4470/19/14/014","DOIUrl":null,"url":null,"abstract":"The quantization of the Lorenz equations is shown to take the form of two complex and one real stochastic differential equations with multiplicative noise. Phase diffusion is the dominant feature for small values of the noise. Quantities such as the probability of the modulus of the variables are unchanged from those in the classical Lorenz equations. Moreover a unique fractal dimension can be associated with the stochastic process. For large noises there is a radical breakdown of this picture.","PeriodicalId":262701,"journal":{"name":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Quantum Fluctuations and the Lorenz Equations\",\"authors\":\"S. Sarkar, J. Satchell, H. Carmichael\",\"doi\":\"10.1088/0305-4470/19/14/014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantization of the Lorenz equations is shown to take the form of two complex and one real stochastic differential equations with multiplicative noise. Phase diffusion is the dominant feature for small values of the noise. Quantities such as the probability of the modulus of the variables are unchanged from those in the classical Lorenz equations. Moreover a unique fractal dimension can be associated with the stochastic process. For large noises there is a radical breakdown of this picture.\",\"PeriodicalId\":262701,\"journal\":{\"name\":\"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4470/19/14/014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/19/14/014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

Lorenz方程的量化表现为两个复微分方程和一个带乘性噪声的实随机微分方程。相位扩散是小噪声的主要特征。变量的模的概率等量与经典洛伦兹方程中的量没有变化。此外,一个独特的分形维数可以与随机过程相关联。对于大的噪声,这幅图就彻底崩溃了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Fluctuations and the Lorenz Equations
The quantization of the Lorenz equations is shown to take the form of two complex and one real stochastic differential equations with multiplicative noise. Phase diffusion is the dominant feature for small values of the noise. Quantities such as the probability of the modulus of the variables are unchanged from those in the classical Lorenz equations. Moreover a unique fractal dimension can be associated with the stochastic process. For large noises there is a radical breakdown of this picture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信