{"title":"基于全局自关注卷积神经网络的可视化软件缺陷预测","authors":"Shaojian Qiu, Shaosheng Wang, Xuhong Tian, Mengyang Huang, Qiong Huang","doi":"10.1109/QRS57517.2022.00029","DOIUrl":null,"url":null,"abstract":"Defect prediction technology helps software quality assurance teams understand the distribution of software defects, which can assist them to allocate testing and verification resources appropriately. Current visualization-based software defect prediction methods lack spatial and global information of code images during the feature extraction process. To solve the problem of incomplete information, this paper proposes a Convolutional Neural Network with Global Self-Attention (CNN-GSA). The method converts codes into corresponding images and uses an improved convolutional neural network, which combines channel attention, spatial attention, and self-attention mechanisms in a global attention layer, to extract defect-related structural and semantic features in code images. Empirical study shows that the model built with the features generated by CNN-GSA can achieve better F-measure results in defect prediction tasks.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization-Based Software Defect Prediction via Convolutional Neural Network with Global Self-Attention\",\"authors\":\"Shaojian Qiu, Shaosheng Wang, Xuhong Tian, Mengyang Huang, Qiong Huang\",\"doi\":\"10.1109/QRS57517.2022.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defect prediction technology helps software quality assurance teams understand the distribution of software defects, which can assist them to allocate testing and verification resources appropriately. Current visualization-based software defect prediction methods lack spatial and global information of code images during the feature extraction process. To solve the problem of incomplete information, this paper proposes a Convolutional Neural Network with Global Self-Attention (CNN-GSA). The method converts codes into corresponding images and uses an improved convolutional neural network, which combines channel attention, spatial attention, and self-attention mechanisms in a global attention layer, to extract defect-related structural and semantic features in code images. Empirical study shows that the model built with the features generated by CNN-GSA can achieve better F-measure results in defect prediction tasks.\",\"PeriodicalId\":143812,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS57517.2022.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualization-Based Software Defect Prediction via Convolutional Neural Network with Global Self-Attention
Defect prediction technology helps software quality assurance teams understand the distribution of software defects, which can assist them to allocate testing and verification resources appropriately. Current visualization-based software defect prediction methods lack spatial and global information of code images during the feature extraction process. To solve the problem of incomplete information, this paper proposes a Convolutional Neural Network with Global Self-Attention (CNN-GSA). The method converts codes into corresponding images and uses an improved convolutional neural network, which combines channel attention, spatial attention, and self-attention mechanisms in a global attention layer, to extract defect-related structural and semantic features in code images. Empirical study shows that the model built with the features generated by CNN-GSA can achieve better F-measure results in defect prediction tasks.