基于加权支持向量机的垃圾邮件过滤方法

Xiao-li Chen, Pei-yu Liu, Zhen-fang Zhu, Y. Qiu
{"title":"基于加权支持向量机的垃圾邮件过滤方法","authors":"Xiao-li Chen, Pei-yu Liu, Zhen-fang Zhu, Y. Qiu","doi":"10.1109/ITIME.2009.5236212","DOIUrl":null,"url":null,"abstract":"The problem of content-based spam filtering on machine learning methods actually is a binary classification. SVMs can separate the data into two categories optimally so SVMs suit to spam filtering. With used into spam filtering, the standard support vector machine involves the minimization of the error function and the accuracy of the SVM is very high, but the degree of misclassification of legitimate emails is high. In order to solve that problem, this paper proposed a method of spam filtering based on weighted support vector machines. Experimental results show that the algorithm can enhance the filtering performance effectively.","PeriodicalId":398477,"journal":{"name":"2009 IEEE International Symposium on IT in Medicine & Education","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A method of spam filtering based on weighted support vector machines\",\"authors\":\"Xiao-li Chen, Pei-yu Liu, Zhen-fang Zhu, Y. Qiu\",\"doi\":\"10.1109/ITIME.2009.5236212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of content-based spam filtering on machine learning methods actually is a binary classification. SVMs can separate the data into two categories optimally so SVMs suit to spam filtering. With used into spam filtering, the standard support vector machine involves the minimization of the error function and the accuracy of the SVM is very high, but the degree of misclassification of legitimate emails is high. In order to solve that problem, this paper proposed a method of spam filtering based on weighted support vector machines. Experimental results show that the algorithm can enhance the filtering performance effectively.\",\"PeriodicalId\":398477,\"journal\":{\"name\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITIME.2009.5236212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on IT in Medicine & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2009.5236212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

机器学习方法中基于内容的垃圾邮件过滤问题实际上是一个二元分类问题。支持向量机可以最优地将数据分为两类,因此支持向量机适合于垃圾邮件过滤。标准支持向量机用于垃圾邮件过滤时,涉及到误差函数的最小化,支持向量机的准确率很高,但对合法邮件的误分类程度较高。为了解决这一问题,本文提出了一种基于加权支持向量机的垃圾邮件过滤方法。实验结果表明,该算法能有效地提高滤波性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of spam filtering based on weighted support vector machines
The problem of content-based spam filtering on machine learning methods actually is a binary classification. SVMs can separate the data into two categories optimally so SVMs suit to spam filtering. With used into spam filtering, the standard support vector machine involves the minimization of the error function and the accuracy of the SVM is very high, but the degree of misclassification of legitimate emails is high. In order to solve that problem, this paper proposed a method of spam filtering based on weighted support vector machines. Experimental results show that the algorithm can enhance the filtering performance effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信