H.264长期参考选择与频繁的镜头转换视频

N. Ozbek, A. Tekalp
{"title":"H.264长期参考选择与频繁的镜头转换视频","authors":"N. Ozbek, A. Tekalp","doi":"10.1109/SIU.2006.1659860","DOIUrl":null,"url":null,"abstract":"Long-term reference prediction is an important feature of the H.264/MPEG-4 AVC standard, which provides a tradeoff between compression gain and computational complexity. In this study, we propose a long-term reference selection method for videos with frequent camera transitions to optimize compression efficiency at shot boundaries without increasing the computational complexity. Experimental results show up to 50% reduction in the number of bits (at the same PSNR) for frames at the border of camera transitions","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"H.264 Long-Term Reference Selection for Videos with Frequent Camera Transitions\",\"authors\":\"N. Ozbek, A. Tekalp\",\"doi\":\"10.1109/SIU.2006.1659860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term reference prediction is an important feature of the H.264/MPEG-4 AVC standard, which provides a tradeoff between compression gain and computational complexity. In this study, we propose a long-term reference selection method for videos with frequent camera transitions to optimize compression efficiency at shot boundaries without increasing the computational complexity. Experimental results show up to 50% reduction in the number of bits (at the same PSNR) for frames at the border of camera transitions\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

长期参考预测是H.264/MPEG-4 AVC标准的一个重要特性,它提供了压缩增益和计算复杂度之间的权衡。在本研究中,我们提出了一种针对镜头切换频繁的视频的长期参考选择方法,在不增加计算复杂度的情况下优化镜头边界的压缩效率。实验结果表明,在相同的PSNR下,在相机过渡边界处的帧的比特数减少了50%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H.264 Long-Term Reference Selection for Videos with Frequent Camera Transitions
Long-term reference prediction is an important feature of the H.264/MPEG-4 AVC standard, which provides a tradeoff between compression gain and computational complexity. In this study, we propose a long-term reference selection method for videos with frequent camera transitions to optimize compression efficiency at shot boundaries without increasing the computational complexity. Experimental results show up to 50% reduction in the number of bits (at the same PSNR) for frames at the border of camera transitions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信