一种可行的基于层次深度优先聚类的约束区域查找方法

Kwang-Su Yang, Ruixin Yang, M. Kafatos
{"title":"一种可行的基于层次深度优先聚类的约束区域查找方法","authors":"Kwang-Su Yang, Ruixin Yang, M. Kafatos","doi":"10.1109/SSDM.2001.938559","DOIUrl":null,"url":null,"abstract":"Addresses a reliable, feasible method to find geographical areas with constraints using hierarchical depth-first clustering. The method involves multi-level hierarchical clustering with a depth-first strategy, depending on whether the area of each cluster satisfies the given constraints. The attributes used in the hierarchical clustering are the coordinates of the grid data points. The constraints are an average value range and the minimum size of an area with a small proportion of missing data points. Convex-hull and point-in-polygon algorithms are involved in examining the constraint satisfaction. The method is implemented for an Earth science data set for vegetation studies - the Normalized Difference Vegetation Index (NVDI).","PeriodicalId":129323,"journal":{"name":"Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001","volume":"48 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A feasible method to find areas with constraints using hierarchical depth-first clustering\",\"authors\":\"Kwang-Su Yang, Ruixin Yang, M. Kafatos\",\"doi\":\"10.1109/SSDM.2001.938559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addresses a reliable, feasible method to find geographical areas with constraints using hierarchical depth-first clustering. The method involves multi-level hierarchical clustering with a depth-first strategy, depending on whether the area of each cluster satisfies the given constraints. The attributes used in the hierarchical clustering are the coordinates of the grid data points. The constraints are an average value range and the minimum size of an area with a small proportion of missing data points. Convex-hull and point-in-polygon algorithms are involved in examining the constraint satisfaction. The method is implemented for an Earth science data set for vegetation studies - the Normalized Difference Vegetation Index (NVDI).\",\"PeriodicalId\":129323,\"journal\":{\"name\":\"Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001\",\"volume\":\"48 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDM.2001.938559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDM.2001.938559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种可靠、可行的方法,利用层次深度优先聚类找到具有约束的地理区域。该方法根据每个聚类的面积是否满足给定的约束条件,采用深度优先策略进行多级分层聚类。在分层聚类中使用的属性是网格数据点的坐标。约束条件是平均值范围和最小面积,其中缺失数据点的比例很小。采用凸壳算法和点多边形算法来检验约束的满足程度。该方法应用于植被研究的地球科学数据集——归一化植被指数(NVDI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A feasible method to find areas with constraints using hierarchical depth-first clustering
Addresses a reliable, feasible method to find geographical areas with constraints using hierarchical depth-first clustering. The method involves multi-level hierarchical clustering with a depth-first strategy, depending on whether the area of each cluster satisfies the given constraints. The attributes used in the hierarchical clustering are the coordinates of the grid data points. The constraints are an average value range and the minimum size of an area with a small proportion of missing data points. Convex-hull and point-in-polygon algorithms are involved in examining the constraint satisfaction. The method is implemented for an Earth science data set for vegetation studies - the Normalized Difference Vegetation Index (NVDI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信