基于大数据平台的油藏代理模型函数估计

M. Piantanida, A. Amendola, G. Formato
{"title":"基于大数据平台的油藏代理模型函数估计","authors":"M. Piantanida, A. Amendola, G. Formato","doi":"10.3997/2214-4609.201803028","DOIUrl":null,"url":null,"abstract":"Summary The abstract documents how a Big Data Analytics platform allowed to implement a complex functional estimator of a reservoir proxy model, involving complex machine learning operations on dynamic reservoir models, so that it can scale up to the size of realistic reservoir models.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"37 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Estimator For Reservoir Proxy Models Made Scalable Through A Big Data Platform\",\"authors\":\"M. Piantanida, A. Amendola, G. Formato\",\"doi\":\"10.3997/2214-4609.201803028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The abstract documents how a Big Data Analytics platform allowed to implement a complex functional estimator of a reservoir proxy model, involving complex machine learning operations on dynamic reservoir models, so that it can scale up to the size of realistic reservoir models.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"37 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要介绍了大数据分析平台如何实现油藏代理模型的复杂函数估计,包括对动态油藏模型进行复杂的机器学习操作,以便将其扩展到实际油藏模型的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Estimator For Reservoir Proxy Models Made Scalable Through A Big Data Platform
Summary The abstract documents how a Big Data Analytics platform allowed to implement a complex functional estimator of a reservoir proxy model, involving complex machine learning operations on dynamic reservoir models, so that it can scale up to the size of realistic reservoir models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信