{"title":"杂质对晶界开槽影响的分子动力学研究","authors":"T. Iwasaki, N. Sasaki, A. Yasukawa, N. Chiba","doi":"10.1299/JSMEA1993.40.1_15","DOIUrl":null,"url":null,"abstract":"Impurity effects on grain boundary grooving in crystalline aluminum are studied using computer molecular-dynamics simulation. We use a Morse potential that includes equilibrium spacing (v A1 ) and potential well depth (|(u A1 |) to characterize aluminum/aluminum interaction, and a two-body interatomic potential that includes equilibrium spacing (v m ) and potential well depth (|u min |) to characterize aluminum/ impurity interaction. Simulations show that when v m is smaller than v A1 and when |u min | is close to |u A1 | (within ±20% of it), grain boundary grooving is prevented. This is effect is explained by a decrease in the ratio of grain boundary diffusion to surface diffusion. Diffusion coefficients obtained in our simulations show that impurities at grain boundaries which satisfy the above conditions (e.g. copper) strengthen surface diffusion without strengthening grain boundary diffusion.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Molecular Dynamics Study of Impurity Effects on Grain Boundary Grooving\",\"authors\":\"T. Iwasaki, N. Sasaki, A. Yasukawa, N. Chiba\",\"doi\":\"10.1299/JSMEA1993.40.1_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impurity effects on grain boundary grooving in crystalline aluminum are studied using computer molecular-dynamics simulation. We use a Morse potential that includes equilibrium spacing (v A1 ) and potential well depth (|(u A1 |) to characterize aluminum/aluminum interaction, and a two-body interatomic potential that includes equilibrium spacing (v m ) and potential well depth (|u min |) to characterize aluminum/ impurity interaction. Simulations show that when v m is smaller than v A1 and when |u min | is close to |u A1 | (within ±20% of it), grain boundary grooving is prevented. This is effect is explained by a decrease in the ratio of grain boundary diffusion to surface diffusion. Diffusion coefficients obtained in our simulations show that impurities at grain boundaries which satisfy the above conditions (e.g. copper) strengthen surface diffusion without strengthening grain boundary diffusion.\",\"PeriodicalId\":143127,\"journal\":{\"name\":\"JSME international journal. Series A, mechanics and material engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSME international journal. Series A, mechanics and material engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA1993.40.1_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.40.1_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
采用计算机分子动力学模拟方法研究了杂质对结晶铝晶界开槽的影响。我们使用包含平衡间距(v A1)和势阱深度(|(u A1 |))的莫尔斯势来表征铝/铝相互作用,使用包含平衡间距(v m)和势阱深度(|u min |)的两体原子相互作用势来表征铝/杂质相互作用。仿真结果表明,当v m小于v A1时,当u min |接近u A1 |时(在±20%范围内),晶界开槽现象不会发生。这种效应可以用晶界扩散与表面扩散之比的减小来解释。模拟得到的扩散系数表明,满足上述条件的晶界杂质(如铜)加强了表面扩散,但不加强晶界扩散。
Molecular Dynamics Study of Impurity Effects on Grain Boundary Grooving
Impurity effects on grain boundary grooving in crystalline aluminum are studied using computer molecular-dynamics simulation. We use a Morse potential that includes equilibrium spacing (v A1 ) and potential well depth (|(u A1 |) to characterize aluminum/aluminum interaction, and a two-body interatomic potential that includes equilibrium spacing (v m ) and potential well depth (|u min |) to characterize aluminum/ impurity interaction. Simulations show that when v m is smaller than v A1 and when |u min | is close to |u A1 | (within ±20% of it), grain boundary grooving is prevented. This is effect is explained by a decrease in the ratio of grain boundary diffusion to surface diffusion. Diffusion coefficients obtained in our simulations show that impurities at grain boundaries which satisfy the above conditions (e.g. copper) strengthen surface diffusion without strengthening grain boundary diffusion.