最小化Lyapunov函数漂移的调度策略的大偏差最优性

Xiaojun Lin, V. Venkataramanan
{"title":"最小化Lyapunov函数漂移的调度策略的大偏差最优性","authors":"Xiaojun Lin, V. Venkataramanan","doi":"10.1109/ALLERTON.2009.5394895","DOIUrl":null,"url":null,"abstract":"We show that for a large class of scheduling algorithms, when the algorithm minimizes the drift of a Lyapunov function, the algorithm is optimal in maximizing the asymptotic decay-rate of the probability that the Lyapunov function value exceeds a large threshold. The result in this paper extends our prior results to the important and practically-useful case when the Lyapunov function is not linear in scale, in which case the evolution of the fluid-sample-paths becomes more difficult to track. We use the notion of generalized fluid-sample-paths to address this difficulty, and provide easy-to-verify conditions for checking the large-deviations optimality of scheduling algorithms. As an immediate application of the result, we show that the log-rule is optimal in maximizing the asymptotic decay-rate of the probability that the sum queue exceeds a threshold B.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the large-deviations optimality of scheduling policies minimizing the drift of a Lyapunov function\",\"authors\":\"Xiaojun Lin, V. Venkataramanan\",\"doi\":\"10.1109/ALLERTON.2009.5394895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for a large class of scheduling algorithms, when the algorithm minimizes the drift of a Lyapunov function, the algorithm is optimal in maximizing the asymptotic decay-rate of the probability that the Lyapunov function value exceeds a large threshold. The result in this paper extends our prior results to the important and practically-useful case when the Lyapunov function is not linear in scale, in which case the evolution of the fluid-sample-paths becomes more difficult to track. We use the notion of generalized fluid-sample-paths to address this difficulty, and provide easy-to-verify conditions for checking the large-deviations optimality of scheduling algorithms. As an immediate application of the result, we show that the log-rule is optimal in maximizing the asymptotic decay-rate of the probability that the sum queue exceeds a threshold B.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2009.5394895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们证明了对于一大类调度算法,当算法最小化Lyapunov函数的漂移时,该算法在最大化Lyapunov函数值超过一个大阈值的概率的渐近衰减率方面是最优的。本文的结果将我们先前的结果扩展到Lyapunov函数在尺度上不是线性的重要且实用的情况,在这种情况下,流体样本路径的演变变得更加难以跟踪。我们使用广义流体样本路径的概念来解决这一困难,并为检查调度算法的大偏差最优性提供了易于验证的条件。作为结果的直接应用,我们证明了对数规则在最大化和队列超过阈值B的概率的渐近衰减率时是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the large-deviations optimality of scheduling policies minimizing the drift of a Lyapunov function
We show that for a large class of scheduling algorithms, when the algorithm minimizes the drift of a Lyapunov function, the algorithm is optimal in maximizing the asymptotic decay-rate of the probability that the Lyapunov function value exceeds a large threshold. The result in this paper extends our prior results to the important and practically-useful case when the Lyapunov function is not linear in scale, in which case the evolution of the fluid-sample-paths becomes more difficult to track. We use the notion of generalized fluid-sample-paths to address this difficulty, and provide easy-to-verify conditions for checking the large-deviations optimality of scheduling algorithms. As an immediate application of the result, we show that the log-rule is optimal in maximizing the asymptotic decay-rate of the probability that the sum queue exceeds a threshold B.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信