红外图像增强和人体检测性能措施

Katherine Hanton, J. Sunde, M. Butavicius, V. Gluscevic
{"title":"红外图像增强和人体检测性能措施","authors":"Katherine Hanton, J. Sunde, M. Butavicius, V. Gluscevic","doi":"10.1504/IJIDSS.2010.033672","DOIUrl":null,"url":null,"abstract":"The ability to detect and recognise dangerous objects at a safe distance is a very important task in a number of defence, police and security applications. In this paper, we look at ways of increasing the effectiveness of infrared imagery for object recognition through processes such as super-resolution image reconstruction and deconvolution methods. In this paper, we propose two techniques for assessing image quality improvement: operator assessment and edge detection; and report on some initial work recently undertaken.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infrared image enhancement and human detection performance measures\",\"authors\":\"Katherine Hanton, J. Sunde, M. Butavicius, V. Gluscevic\",\"doi\":\"10.1504/IJIDSS.2010.033672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to detect and recognise dangerous objects at a safe distance is a very important task in a number of defence, police and security applications. In this paper, we look at ways of increasing the effectiveness of infrared imagery for object recognition through processes such as super-resolution image reconstruction and deconvolution methods. In this paper, we propose two techniques for assessing image quality improvement: operator assessment and edge detection; and report on some initial work recently undertaken.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2010.033672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2010.033672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在安全距离内探测和识别危险物体的能力在许多国防、警察和安全应用中是一项非常重要的任务。在本文中,我们着眼于通过超分辨率图像重建和反卷积方法等过程来提高红外图像对目标识别的有效性的方法。在本文中,我们提出了两种评估图像质量改进的技术:算子评估和边缘检测;并报告最近开展的一些初步工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared image enhancement and human detection performance measures
The ability to detect and recognise dangerous objects at a safe distance is a very important task in a number of defence, police and security applications. In this paper, we look at ways of increasing the effectiveness of infrared imagery for object recognition through processes such as super-resolution image reconstruction and deconvolution methods. In this paper, we propose two techniques for assessing image quality improvement: operator assessment and edge detection; and report on some initial work recently undertaken.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信