以数据为中心的边缘ai:符号表示用例

Shashikant Ilager, Vincenzo De Maio, Ivan Lujic, I. Brandić
{"title":"以数据为中心的边缘ai:符号表示用例","authors":"Shashikant Ilager, Vincenzo De Maio, Ivan Lujic, I. Brandić","doi":"10.1109/EDGE60047.2023.00052","DOIUrl":null,"url":null,"abstract":"Today’s machine learning pipelines are primarily executed in the cloud, from data storage to data processing, model training, and deployment. However, machine learning is moving to edge devices, creating the demand for AI applications at the edge, known as Edge-AI. Traditional data management practices applied in the cloud are proving to be inefficient for Edge-AI, due to resource and energy constraints of edge devices and real-time requirements of applications. This paper identifies the challenges associated with data processing for Edge-AI. We then discuss methods for efficient data processing at the edge, leading to data-centric Edge-AI. As a use case scenario, we discuss the symbolic representation of time series data and explain how it could help save the cost of data storage and processing in developing Edge-AI applications.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"8 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-centric Edge-AI: A Symbolic Representation Use Case\",\"authors\":\"Shashikant Ilager, Vincenzo De Maio, Ivan Lujic, I. Brandić\",\"doi\":\"10.1109/EDGE60047.2023.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s machine learning pipelines are primarily executed in the cloud, from data storage to data processing, model training, and deployment. However, machine learning is moving to edge devices, creating the demand for AI applications at the edge, known as Edge-AI. Traditional data management practices applied in the cloud are proving to be inefficient for Edge-AI, due to resource and energy constraints of edge devices and real-time requirements of applications. This paper identifies the challenges associated with data processing for Edge-AI. We then discuss methods for efficient data processing at the edge, leading to data-centric Edge-AI. As a use case scenario, we discuss the symbolic representation of time series data and explain how it could help save the cost of data storage and processing in developing Edge-AI applications.\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"8 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

今天的机器学习管道主要在云中执行,从数据存储到数据处理、模型训练和部署。然而,机器学习正在向边缘设备转移,从而产生了对边缘AI应用程序的需求,称为edge -AI。由于边缘设备的资源和能源限制以及应用程序的实时性要求,在云中应用的传统数据管理实践对于边缘人工智能来说是低效的。本文确定了与Edge-AI数据处理相关的挑战。然后,我们讨论了在边缘进行有效数据处理的方法,从而导致以数据为中心的边缘人工智能。作为一个用例场景,我们讨论了时间序列数据的符号表示,并解释了它如何帮助节省开发边缘人工智能应用程序的数据存储和处理成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-centric Edge-AI: A Symbolic Representation Use Case
Today’s machine learning pipelines are primarily executed in the cloud, from data storage to data processing, model training, and deployment. However, machine learning is moving to edge devices, creating the demand for AI applications at the edge, known as Edge-AI. Traditional data management practices applied in the cloud are proving to be inefficient for Edge-AI, due to resource and energy constraints of edge devices and real-time requirements of applications. This paper identifies the challenges associated with data processing for Edge-AI. We then discuss methods for efficient data processing at the edge, leading to data-centric Edge-AI. As a use case scenario, we discuss the symbolic representation of time series data and explain how it could help save the cost of data storage and processing in developing Edge-AI applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信