一种用于长寿命无线传感器节点的新型节能框架

D. Sacaleanu, L. Perisoara, R. Stoian, V. Lazarescu
{"title":"一种用于长寿命无线传感器节点的新型节能框架","authors":"D. Sacaleanu, L. Perisoara, R. Stoian, V. Lazarescu","doi":"10.1109/NTMS.2015.7266467","DOIUrl":null,"url":null,"abstract":"This paper proposes a new data processing framework for energy saving, based on a synergy between data compression and data aggregation techniques. This combination allows a more compact representation of the transmitted data in the clusters head nodes compared with the individual use of each technique. For data compression, we use the static Huffman algorithm with Extrapolation prediction that exploits Temporal correlation (ET) and static Huffman algorithm with Differential prediction that exploits Spatial correlation (DS). For data aggregation we use a Bit Aggregation Technique (BAT) to efficiently represent the data carrying bits from a byte. To validate the synergetic combination between ET, DS and BAT, we developed two platforms that allow us to simulate and practical implement the algorithms. The performances are compared with those of the classical Adaptive Huffman algorithm with Differential prediction that exploits Temporal correlation (DT). The results show an important decrease of energy consumption for the synergetic solution obtained both on software and hardware platforms.","PeriodicalId":115020,"journal":{"name":"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new energy saving framework for long lasting wireless sensor nodes\",\"authors\":\"D. Sacaleanu, L. Perisoara, R. Stoian, V. Lazarescu\",\"doi\":\"10.1109/NTMS.2015.7266467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new data processing framework for energy saving, based on a synergy between data compression and data aggregation techniques. This combination allows a more compact representation of the transmitted data in the clusters head nodes compared with the individual use of each technique. For data compression, we use the static Huffman algorithm with Extrapolation prediction that exploits Temporal correlation (ET) and static Huffman algorithm with Differential prediction that exploits Spatial correlation (DS). For data aggregation we use a Bit Aggregation Technique (BAT) to efficiently represent the data carrying bits from a byte. To validate the synergetic combination between ET, DS and BAT, we developed two platforms that allow us to simulate and practical implement the algorithms. The performances are compared with those of the classical Adaptive Huffman algorithm with Differential prediction that exploits Temporal correlation (DT). The results show an important decrease of energy consumption for the synergetic solution obtained both on software and hardware platforms.\",\"PeriodicalId\":115020,\"journal\":{\"name\":\"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTMS.2015.7266467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2015.7266467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于数据压缩和数据聚合技术的协同作用,提出了一种新的节能数据处理框架。与单独使用每种技术相比,这种组合允许在簇头节点中更紧凑地表示传输的数据。对于数据压缩,我们使用静态霍夫曼算法与外推预测,利用时间相关性(ET)和静态霍夫曼算法与差分预测,利用空间相关性(DS)。对于数据聚合,我们使用位聚合技术(BAT)来有效地表示从一个字节中携带的数据位。为了验证ET, DS和BAT之间的协同组合,我们开发了两个平台,允许我们模拟和实际实现算法。将其性能与利用时间相关(DT)进行微分预测的经典自适应霍夫曼算法进行了比较。结果表明,在软件和硬件平台上获得的协同解决方案的能耗显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new energy saving framework for long lasting wireless sensor nodes
This paper proposes a new data processing framework for energy saving, based on a synergy between data compression and data aggregation techniques. This combination allows a more compact representation of the transmitted data in the clusters head nodes compared with the individual use of each technique. For data compression, we use the static Huffman algorithm with Extrapolation prediction that exploits Temporal correlation (ET) and static Huffman algorithm with Differential prediction that exploits Spatial correlation (DS). For data aggregation we use a Bit Aggregation Technique (BAT) to efficiently represent the data carrying bits from a byte. To validate the synergetic combination between ET, DS and BAT, we developed two platforms that allow us to simulate and practical implement the algorithms. The performances are compared with those of the classical Adaptive Huffman algorithm with Differential prediction that exploits Temporal correlation (DT). The results show an important decrease of energy consumption for the synergetic solution obtained both on software and hardware platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信