协同进化IPD策略的PSO方法

N. Franken, A. Engelbrecht
{"title":"协同进化IPD策略的PSO方法","authors":"N. Franken, A. Engelbrecht","doi":"10.1109/CEC.2004.1330879","DOIUrl":null,"url":null,"abstract":"This paper investigates two different approaches using particle swarm optimisation (PSO) to evolve strategies for iterated prisoner's dilemma (IPD). Strategies evolved by the lesser known binary PSO algorithm are compared to strategies evolved by neural networks that were trained using PSO. Evolved strategies are compared against well-known game theory strategies, with positive results. The presence of noise during IPD interactions are also investigated, and evolved strategies are compared against the same well-known game theory strategies in a noisy environment.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"702 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"PSO approaches to coevolve IPD strategies\",\"authors\":\"N. Franken, A. Engelbrecht\",\"doi\":\"10.1109/CEC.2004.1330879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates two different approaches using particle swarm optimisation (PSO) to evolve strategies for iterated prisoner's dilemma (IPD). Strategies evolved by the lesser known binary PSO algorithm are compared to strategies evolved by neural networks that were trained using PSO. Evolved strategies are compared against well-known game theory strategies, with positive results. The presence of noise during IPD interactions are also investigated, and evolved strategies are compared against the same well-known game theory strategies in a noisy environment.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"702 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了两种不同的方法,利用粒子群优化(PSO)来进化迭代囚犯困境(IPD)策略。由鲜为人知的二进制粒子群算法进化的策略与使用粒子群算法训练的神经网络进化的策略进行了比较。将进化策略与著名的博弈论策略进行了比较,得到了积极的结果。本文还研究了IPD相互作用过程中噪声的存在,并将进化策略与噪声环境中相同的博弈论策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSO approaches to coevolve IPD strategies
This paper investigates two different approaches using particle swarm optimisation (PSO) to evolve strategies for iterated prisoner's dilemma (IPD). Strategies evolved by the lesser known binary PSO algorithm are compared to strategies evolved by neural networks that were trained using PSO. Evolved strategies are compared against well-known game theory strategies, with positive results. The presence of noise during IPD interactions are also investigated, and evolved strategies are compared against the same well-known game theory strategies in a noisy environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信