基于神经网络的通信信号调制自动识别

Xiaolei Zhu, Yun Lin, Z. Dou
{"title":"基于神经网络的通信信号调制自动识别","authors":"Xiaolei Zhu, Yun Lin, Z. Dou","doi":"10.1109/ICEICT.2016.7879688","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of low modulation recognition rate of digital communication signals and the difficulty of selecting the appropriate decision threshold, the paper features a recognition method for communication signal modulation. The paper constructs characteristic parameters for recognizing signals in the cyclic frequency domain, and uses a 3-layer neural network as a classifier to identify the modulation mode. The experiment indicates that it can recognize 2FSK, 4FSK, 8FSK, BPSK, QPSK, MSK and 2ASK When signal to noise ratio (SNR) is higher than 0 dB, the recognition rate achieves 95%. The results suggest that recognition of communication signal modulation based on neural network is accurate and feasible.","PeriodicalId":224387,"journal":{"name":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic recognition of communication signal modulation based on neural network\",\"authors\":\"Xiaolei Zhu, Yun Lin, Z. Dou\",\"doi\":\"10.1109/ICEICT.2016.7879688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of low modulation recognition rate of digital communication signals and the difficulty of selecting the appropriate decision threshold, the paper features a recognition method for communication signal modulation. The paper constructs characteristic parameters for recognizing signals in the cyclic frequency domain, and uses a 3-layer neural network as a classifier to identify the modulation mode. The experiment indicates that it can recognize 2FSK, 4FSK, 8FSK, BPSK, QPSK, MSK and 2ASK When signal to noise ratio (SNR) is higher than 0 dB, the recognition rate achieves 95%. The results suggest that recognition of communication signal modulation based on neural network is accurate and feasible.\",\"PeriodicalId\":224387,\"journal\":{\"name\":\"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT.2016.7879688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2016.7879688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了解决数字通信信号调制识别率低和判断阈值难以选择的问题,本文提出了一种通信信号调制识别方法。本文构建了循环频域信号识别的特征参数,并采用三层神经网络作为分类器对调制方式进行识别。实验表明,该方法可以识别2FSK、4FSK、8FSK、BPSK、QPSK、MSK和2ASK,当信噪比(SNR)大于0 dB时,识别率达到95%。结果表明,基于神经网络的通信信号调制识别是准确可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic recognition of communication signal modulation based on neural network
In order to solve the problem of low modulation recognition rate of digital communication signals and the difficulty of selecting the appropriate decision threshold, the paper features a recognition method for communication signal modulation. The paper constructs characteristic parameters for recognizing signals in the cyclic frequency domain, and uses a 3-layer neural network as a classifier to identify the modulation mode. The experiment indicates that it can recognize 2FSK, 4FSK, 8FSK, BPSK, QPSK, MSK and 2ASK When signal to noise ratio (SNR) is higher than 0 dB, the recognition rate achieves 95%. The results suggest that recognition of communication signal modulation based on neural network is accurate and feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信