{"title":"利用密钥的部分顺序验证车辆组协议的安全性","authors":"Felipe Boeira, Mikael Asplund","doi":"10.1109/CSF54842.2022.9919664","DOIUrl":null,"url":null,"abstract":"Vehicular networks will enable a range of novel applications to enhance road traffic efficiency, safety, and reduce fuel consumption. As for other cyber-physical systems, security is essential to the deployment of these applications and standardisation efforts are ongoing. In this paper, we perform a systematic security evaluation of a vehicular platooning protocol through a thorough analysis of the protocol and security standards. We tackle the complexity of the resulting model with a proof strategy based on a relation on keys. The key relation forms a partial order, which encapsulates both secrecy and authenticity dependencies. We show that our order-aware approach makes the verification feasible and proves authenticity properties along with secrecy of all keys used throughout the protocol.","PeriodicalId":412553,"journal":{"name":"2022 IEEE 35th Computer Security Foundations Symposium (CSF)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Partial Order of Keys to Verify Security of a Vehicular Group Protocol\",\"authors\":\"Felipe Boeira, Mikael Asplund\",\"doi\":\"10.1109/CSF54842.2022.9919664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular networks will enable a range of novel applications to enhance road traffic efficiency, safety, and reduce fuel consumption. As for other cyber-physical systems, security is essential to the deployment of these applications and standardisation efforts are ongoing. In this paper, we perform a systematic security evaluation of a vehicular platooning protocol through a thorough analysis of the protocol and security standards. We tackle the complexity of the resulting model with a proof strategy based on a relation on keys. The key relation forms a partial order, which encapsulates both secrecy and authenticity dependencies. We show that our order-aware approach makes the verification feasible and proves authenticity properties along with secrecy of all keys used throughout the protocol.\",\"PeriodicalId\":412553,\"journal\":{\"name\":\"2022 IEEE 35th Computer Security Foundations Symposium (CSF)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF54842.2022.9919664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF54842.2022.9919664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Partial Order of Keys to Verify Security of a Vehicular Group Protocol
Vehicular networks will enable a range of novel applications to enhance road traffic efficiency, safety, and reduce fuel consumption. As for other cyber-physical systems, security is essential to the deployment of these applications and standardisation efforts are ongoing. In this paper, we perform a systematic security evaluation of a vehicular platooning protocol through a thorough analysis of the protocol and security standards. We tackle the complexity of the resulting model with a proof strategy based on a relation on keys. The key relation forms a partial order, which encapsulates both secrecy and authenticity dependencies. We show that our order-aware approach makes the verification feasible and proves authenticity properties along with secrecy of all keys used throughout the protocol.