一种计算中间性中心性的并行算法

Guangming Tan, Dengbiao Tu, Ninghui Sun
{"title":"一种计算中间性中心性的并行算法","authors":"Guangming Tan, Dengbiao Tu, Ninghui Sun","doi":"10.1109/ICPP.2009.53","DOIUrl":null,"url":null,"abstract":"In this paper we present a multi-grained parallel algorithm for computing betweenness centrality, which is extensively used in large-scale network analysis. Our method is based on a novel algorithmic handling of access conflicts for a CREW PRAM algorithm. We propose a proper data-processor mapping, a novel edge-numbering strategy and a new triple array data structure recording the shortest path for eliminating conflicts to access the shared memory. The algorithm requires $O(n+m)$ space and $O(\\frac{nm}{p})$ ( or $O(\\frac{nm+n^{2}logn}{p})$) time for unweighted (or weighted) graphs, and it is a work-optimal CREW PRAM algorithm. On current multi-core platforms, our algorithm outperforms the previous algorithm by 2-3 times.","PeriodicalId":169408,"journal":{"name":"2009 International Conference on Parallel Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"A Parallel Algorithm for Computing Betweenness Centrality\",\"authors\":\"Guangming Tan, Dengbiao Tu, Ninghui Sun\",\"doi\":\"10.1109/ICPP.2009.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a multi-grained parallel algorithm for computing betweenness centrality, which is extensively used in large-scale network analysis. Our method is based on a novel algorithmic handling of access conflicts for a CREW PRAM algorithm. We propose a proper data-processor mapping, a novel edge-numbering strategy and a new triple array data structure recording the shortest path for eliminating conflicts to access the shared memory. The algorithm requires $O(n+m)$ space and $O(\\\\frac{nm}{p})$ ( or $O(\\\\frac{nm+n^{2}logn}{p})$) time for unweighted (or weighted) graphs, and it is a work-optimal CREW PRAM algorithm. On current multi-core platforms, our algorithm outperforms the previous algorithm by 2-3 times.\",\"PeriodicalId\":169408,\"journal\":{\"name\":\"2009 International Conference on Parallel Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2009.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文提出了一种广泛应用于大规模网络分析的多粒度间中心性并行计算算法。我们的方法是基于一种新的CREW PRAM算法的访问冲突处理算法。我们提出了一种适当的数据处理器映射、一种新的边缘编号策略和一种新的记录最短路径的三重数组数据结构,以消除访问共享内存的冲突。对于未加权(或加权)图,该算法需要$O(n+m)$空间和$O(\frac{nm}{p})$(或$O(\frac{nm+n^{2}logn}{p})$) $)时间,是一种工作最优的CREW PRAM算法。在当前的多核平台上,我们的算法的性能比以前的算法高出2-3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel Algorithm for Computing Betweenness Centrality
In this paper we present a multi-grained parallel algorithm for computing betweenness centrality, which is extensively used in large-scale network analysis. Our method is based on a novel algorithmic handling of access conflicts for a CREW PRAM algorithm. We propose a proper data-processor mapping, a novel edge-numbering strategy and a new triple array data structure recording the shortest path for eliminating conflicts to access the shared memory. The algorithm requires $O(n+m)$ space and $O(\frac{nm}{p})$ ( or $O(\frac{nm+n^{2}logn}{p})$) time for unweighted (or weighted) graphs, and it is a work-optimal CREW PRAM algorithm. On current multi-core platforms, our algorithm outperforms the previous algorithm by 2-3 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信