结合编译器优化的fpga嵌入式处理器软件估计*

Deshya Wijesundera, Thilina Perera, Dilina Dehigama, T. Srikanthan
{"title":"结合编译器优化的fpga嵌入式处理器软件估计*","authors":"Deshya Wijesundera, Thilina Perera, Dilina Dehigama, T. Srikanthan","doi":"10.1109/ICICT52872.2021.00030","DOIUrl":null,"url":null,"abstract":"The embedded processors beside the traditional FPGA fabric in FPGA-based System-on-Chip (SoC) devices make them an attractive alternative for realizing the software portions of the application while using the FPGA fabric for hardware acceleration. Traditional performance evaluation of applications on these embedded processors require design expertise and costly commercial tools or hardware for each processor. Thus, software based performance estimation techniques that eliminate these requirements are considered a viable alternative. However, estimation techniques which can be applied across different embedded processors do not account for compiler optimizations. This paper proposes a framework for software estimation of embedded processors that incorporates compiler optimizations. The proposed technique relies on a neural network estimation model instead of FPGA synthesis and execution-based techniques, that necessitates costly commercial tools and hardware, and does not require design expertise. Experimental evaluations on the Intel Nios II processor show an average accuracy of 92.5% with a R2 value of 0.9977 for the neural network, which highlights the suitability of the proposed technique.","PeriodicalId":359456,"journal":{"name":"2021 4th International Conference on Information and Computer Technologies (ICICT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Compiler Optimization in Software Estimation for FPGA-based Embedded Processors*\",\"authors\":\"Deshya Wijesundera, Thilina Perera, Dilina Dehigama, T. Srikanthan\",\"doi\":\"10.1109/ICICT52872.2021.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The embedded processors beside the traditional FPGA fabric in FPGA-based System-on-Chip (SoC) devices make them an attractive alternative for realizing the software portions of the application while using the FPGA fabric for hardware acceleration. Traditional performance evaluation of applications on these embedded processors require design expertise and costly commercial tools or hardware for each processor. Thus, software based performance estimation techniques that eliminate these requirements are considered a viable alternative. However, estimation techniques which can be applied across different embedded processors do not account for compiler optimizations. This paper proposes a framework for software estimation of embedded processors that incorporates compiler optimizations. The proposed technique relies on a neural network estimation model instead of FPGA synthesis and execution-based techniques, that necessitates costly commercial tools and hardware, and does not require design expertise. Experimental evaluations on the Intel Nios II processor show an average accuracy of 92.5% with a R2 value of 0.9977 for the neural network, which highlights the suitability of the proposed technique.\",\"PeriodicalId\":359456,\"journal\":{\"name\":\"2021 4th International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT52872.2021.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT52872.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于FPGA的片上系统(SoC)器件中,除了传统FPGA结构之外的嵌入式处理器使它们成为实现应用程序软件部分的有吸引力的替代方案,同时使用FPGA结构进行硬件加速。在这些嵌入式处理器上对应用程序进行传统的性能评估,需要为每个处理器设计专业知识和昂贵的商业工具或硬件。因此,消除这些需求的基于软件的性能评估技术被认为是可行的替代方案。然而,可以跨不同嵌入式处理器应用的估计技术并不考虑编译器优化。本文提出了一个包含编译器优化的嵌入式处理器软件评估框架。所提出的技术依赖于神经网络估计模型,而不是基于FPGA的合成和执行技术,这需要昂贵的商业工具和硬件,并且不需要设计专业知识。在Intel Nios II处理器上的实验评估表明,神经网络的平均准确率为92.5%,R2值为0.9977,突出了所提出技术的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Compiler Optimization in Software Estimation for FPGA-based Embedded Processors*
The embedded processors beside the traditional FPGA fabric in FPGA-based System-on-Chip (SoC) devices make them an attractive alternative for realizing the software portions of the application while using the FPGA fabric for hardware acceleration. Traditional performance evaluation of applications on these embedded processors require design expertise and costly commercial tools or hardware for each processor. Thus, software based performance estimation techniques that eliminate these requirements are considered a viable alternative. However, estimation techniques which can be applied across different embedded processors do not account for compiler optimizations. This paper proposes a framework for software estimation of embedded processors that incorporates compiler optimizations. The proposed technique relies on a neural network estimation model instead of FPGA synthesis and execution-based techniques, that necessitates costly commercial tools and hardware, and does not require design expertise. Experimental evaluations on the Intel Nios II processor show an average accuracy of 92.5% with a R2 value of 0.9977 for the neural network, which highlights the suitability of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信