{"title":"群代数的Hochschild上同调环上的Batalin-Vilkovisky结构","authors":"Yuming Liu, Guodong Zhou","doi":"10.4171/JNCG/249","DOIUrl":null,"url":null,"abstract":"We realize explicitly the well-known additive decomposition of the Hochschild cohomology ring of a group algebra in the elements level. As a result, we describe the cup product, the Batalin-Vilkovisky operator and the Lie bracket in the Hochschild cohomology ring of a group algebra.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Batalin-Vilkovisky structure over the Hochschild cohomology ring of a group algebra\",\"authors\":\"Yuming Liu, Guodong Zhou\",\"doi\":\"10.4171/JNCG/249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We realize explicitly the well-known additive decomposition of the Hochschild cohomology ring of a group algebra in the elements level. As a result, we describe the cup product, the Batalin-Vilkovisky operator and the Lie bracket in the Hochschild cohomology ring of a group algebra.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JNCG/249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Batalin-Vilkovisky structure over the Hochschild cohomology ring of a group algebra
We realize explicitly the well-known additive decomposition of the Hochschild cohomology ring of a group algebra in the elements level. As a result, we describe the cup product, the Batalin-Vilkovisky operator and the Lie bracket in the Hochschild cohomology ring of a group algebra.