{"title":"脑任务识别的光谱波段功率和不对称比","authors":"R. Palaniappan, R. Paramesran","doi":"10.1109/ISSPA.2001.950258","DOIUrl":null,"url":null,"abstract":"We use the power and asymmetry ratio of spectral bands to recognise mental tasks from electroencephalogram signals using a fuzzy ARTMAP neural network. Classical spectral analysis using the Wiener-Khintchine theorem and modem parametric spectral analysis using the autoregressive method are used to obtain these features. The highest classification results of 90% for a subject recognising two mental tasks validate the method.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power and asymmetry ratio of spectral bands for mental task recognition\",\"authors\":\"R. Palaniappan, R. Paramesran\",\"doi\":\"10.1109/ISSPA.2001.950258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the power and asymmetry ratio of spectral bands to recognise mental tasks from electroencephalogram signals using a fuzzy ARTMAP neural network. Classical spectral analysis using the Wiener-Khintchine theorem and modem parametric spectral analysis using the autoregressive method are used to obtain these features. The highest classification results of 90% for a subject recognising two mental tasks validate the method.\",\"PeriodicalId\":236050,\"journal\":{\"name\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2001.950258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.950258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power and asymmetry ratio of spectral bands for mental task recognition
We use the power and asymmetry ratio of spectral bands to recognise mental tasks from electroencephalogram signals using a fuzzy ARTMAP neural network. Classical spectral analysis using the Wiener-Khintchine theorem and modem parametric spectral analysis using the autoregressive method are used to obtain these features. The highest classification results of 90% for a subject recognising two mental tasks validate the method.