基于多维粒子群优化动态聚类的主色提取

S. Kiranyaz, Stefan Uhlmann, M. Gabbouj
{"title":"基于多维粒子群优化动态聚类的主色提取","authors":"S. Kiranyaz, Stefan Uhlmann, M. Gabbouj","doi":"10.1109/CBMI.2009.11","DOIUrl":null,"url":null,"abstract":"Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utter importance since human visual system primarily uses them for perception. In this paper we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multi-Dimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO process. Therefore, in a multidimensional search space where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. To address this problem we then present Fractional Global Best Formation (FGBF) technique, which basically collects all promising dimensional components and fractionally creates an artificial global-best particle (aGB) that has the potential to be a better “guide” than the PSO’s native gbest particle. We finally propose an efficient color distance metric, which uses a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dominant Color Extraction Based on Dynamic Clustering by Multi-dimensional Particle Swarm Optimization\",\"authors\":\"S. Kiranyaz, Stefan Uhlmann, M. Gabbouj\",\"doi\":\"10.1109/CBMI.2009.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utter importance since human visual system primarily uses them for perception. In this paper we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multi-Dimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO process. Therefore, in a multidimensional search space where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. To address this problem we then present Fractional Global Best Formation (FGBF) technique, which basically collects all promising dimensional components and fractionally creates an artificial global-best particle (aGB) that has the potential to be a better “guide” than the PSO’s native gbest particle. We finally propose an efficient color distance metric, which uses a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

颜色是信息的主要来源,广泛应用于图像分析和基于内容的检索。提取视觉风景中突出的主色是非常重要的,因为人类的视觉系统主要利用它们来感知。在本文中,我们将主色提取作为一个动态聚类问题,并使用基于粒子群优化(PSO)的技术在给定的颜色空间、距离度量和适当的有效性指标函数中找到最优(数量)主色。第一种技术,即所谓的多维粒子群(MD)粒子群优化(PSO),通过一种专用的多维粒子群优化(PSO)工艺,重新形成群粒子群的固有结构,使它们能够在多维空间内通过。因此,在最优维度未知的多维搜索空间中,群粒子可以同时寻找位置最优和维度最优。然而,由于缺乏散度,MD粒子群仍然容易过早收敛。为了解决这个问题,我们提出了分数全局最佳形成(FGBF)技术,该技术基本上收集了所有有希望的维度分量,并分数地创建了一个人工全局最佳粒子(aGB),该粒子有可能成为比PSO的天然全局最佳粒子更好的“向导”。我们最后提出了一种有效的颜色距离度量,它使用模糊模型来计算HSV(或HSL)颜色空间上的颜色(非)相似性。通过与MPEG-7主色描述符的比较,证明了该技术的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominant Color Extraction Based on Dynamic Clustering by Multi-dimensional Particle Swarm Optimization
Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utter importance since human visual system primarily uses them for perception. In this paper we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multi-Dimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO process. Therefore, in a multidimensional search space where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. To address this problem we then present Fractional Global Best Formation (FGBF) technique, which basically collects all promising dimensional components and fractionally creates an artificial global-best particle (aGB) that has the potential to be a better “guide” than the PSO’s native gbest particle. We finally propose an efficient color distance metric, which uses a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信