Hilbert空间中微分方程解的渐近性

L. Bagirov, V. Kondrat'ev
{"title":"Hilbert空间中微分方程解的渐近性","authors":"L. Bagirov, V. Kondrat'ev","doi":"10.1070/SM1992V072N02ABEH001415","DOIUrl":null,"url":null,"abstract":"Solutions of differential equations of first and arbitrary order in Hilbert space are investigated; they arise in the study of elliptic problems in cylindrical domains and in domains with singular points. Existence theorems are obtained for a broad class of right sides, and the asymptotics of a solution as t?∞ is constructed under \"minimal\" conditions on the coefficients. The results make considerable progress possible in the study of qualitative properties of solutions of elliptic equations of higher order.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Asymptotics of Solutions of Differential Equations in Hilbert Space\",\"authors\":\"L. Bagirov, V. Kondrat'ev\",\"doi\":\"10.1070/SM1992V072N02ABEH001415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solutions of differential equations of first and arbitrary order in Hilbert space are investigated; they arise in the study of elliptic problems in cylindrical domains and in domains with singular points. Existence theorems are obtained for a broad class of right sides, and the asymptotics of a solution as t?∞ is constructed under \\\"minimal\\\" conditions on the coefficients. The results make considerable progress possible in the study of qualitative properties of solutions of elliptic equations of higher order.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V072N02ABEH001415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N02ABEH001415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究Hilbert空间中一阶和任意阶微分方程的解;它们出现在圆柱域和奇异点域上的椭圆问题的研究中。得到了一类广义右边的存在性定理,并得到了解的渐近性,如t?∞是在系数的“极小”条件下构造的。这些结果使高阶椭圆方程解的定性性质的研究取得了很大的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Asymptotics of Solutions of Differential Equations in Hilbert Space
Solutions of differential equations of first and arbitrary order in Hilbert space are investigated; they arise in the study of elliptic problems in cylindrical domains and in domains with singular points. Existence theorems are obtained for a broad class of right sides, and the asymptotics of a solution as t?∞ is constructed under "minimal" conditions on the coefficients. The results make considerable progress possible in the study of qualitative properties of solutions of elliptic equations of higher order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信