使用智能系统评估和确定食管癌最有效的治疗参数

H. Zahedi, N. Mehrshad, M. Graili
{"title":"使用智能系统评估和确定食管癌最有效的治疗参数","authors":"H. Zahedi, N. Mehrshad, M. Graili","doi":"10.1109/PRIA.2013.6528455","DOIUrl":null,"url":null,"abstract":"In recent years, use of the artificial neural networks has been considered in predicting the effects of different variables on a given variable and modeling these variables have with one another. In this research, first, artificial neural networks have been used to predict the results of treatment of esophageal cancer in patients with esophageal squamous cell carcinoma using chemotherapy, radiotherapy and then Nyvajvnt surgery. In addition, the Particle Swarm Optimization (PSO) is used for training the neural network. Then, using the combined neural network and genetic algorithms, a method is proposed to select the most effective treatment parameters among a set of factors affecting the proposed treatment process. Implementation results show that neural network can predict the level of satisfactory treatment of the cancer process. The results of methods for selecting the most effective parameters on the process of treatment among sixteen proposed parameters are compatible with the previous findings.","PeriodicalId":370476,"journal":{"name":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","volume":"48 3‐4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluate and determine the most effective treatment parameters in esophageal cancer using intelligent systems\",\"authors\":\"H. Zahedi, N. Mehrshad, M. Graili\",\"doi\":\"10.1109/PRIA.2013.6528455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, use of the artificial neural networks has been considered in predicting the effects of different variables on a given variable and modeling these variables have with one another. In this research, first, artificial neural networks have been used to predict the results of treatment of esophageal cancer in patients with esophageal squamous cell carcinoma using chemotherapy, radiotherapy and then Nyvajvnt surgery. In addition, the Particle Swarm Optimization (PSO) is used for training the neural network. Then, using the combined neural network and genetic algorithms, a method is proposed to select the most effective treatment parameters among a set of factors affecting the proposed treatment process. Implementation results show that neural network can predict the level of satisfactory treatment of the cancer process. The results of methods for selecting the most effective parameters on the process of treatment among sixteen proposed parameters are compatible with the previous findings.\",\"PeriodicalId\":370476,\"journal\":{\"name\":\"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)\",\"volume\":\"48 3‐4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2013.6528455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2013.6528455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工神经网络已被用于预测不同变量对给定变量的影响,并对这些变量之间的相互影响进行建模。本研究首先利用人工神经网络预测食管癌鳞状细胞癌患者化疗、放疗再Nyvajvnt手术治疗食管癌的结果。此外,采用粒子群算法(PSO)对神经网络进行训练。然后,采用神经网络和遗传算法相结合的方法,从影响拟处理过程的一组因素中选择最有效的处理参数。实现结果表明,神经网络可以预测癌症治疗过程的满意程度。在16个建议参数中选择治疗过程中最有效参数的方法结果与先前的研究结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluate and determine the most effective treatment parameters in esophageal cancer using intelligent systems
In recent years, use of the artificial neural networks has been considered in predicting the effects of different variables on a given variable and modeling these variables have with one another. In this research, first, artificial neural networks have been used to predict the results of treatment of esophageal cancer in patients with esophageal squamous cell carcinoma using chemotherapy, radiotherapy and then Nyvajvnt surgery. In addition, the Particle Swarm Optimization (PSO) is used for training the neural network. Then, using the combined neural network and genetic algorithms, a method is proposed to select the most effective treatment parameters among a set of factors affecting the proposed treatment process. Implementation results show that neural network can predict the level of satisfactory treatment of the cancer process. The results of methods for selecting the most effective parameters on the process of treatment among sixteen proposed parameters are compatible with the previous findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信