{"title":"全局文件系统中的分级复制控制","authors":"Jiaying Zhang, P. Honeyman","doi":"10.1109/CCGRID.2007.57","DOIUrl":null,"url":null,"abstract":"We develop a consistent mutable replication extension for NFSv4 tuned to meet the rigorous demands of large-scale data sharing in global collaborations. The system uses a hierarchical replication control protocol that dynamically elects a primary server at various granularities. Experimental evaluation indicates a substantial performance advantage over a single server system. With the introduction of the hierarchical replication control, the overhead of replication is negligible even when applications mostly write and replication servers are widely distributed.","PeriodicalId":278535,"journal":{"name":"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Replication Control in a Global File System\",\"authors\":\"Jiaying Zhang, P. Honeyman\",\"doi\":\"10.1109/CCGRID.2007.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a consistent mutable replication extension for NFSv4 tuned to meet the rigorous demands of large-scale data sharing in global collaborations. The system uses a hierarchical replication control protocol that dynamically elects a primary server at various granularities. Experimental evaluation indicates a substantial performance advantage over a single server system. With the introduction of the hierarchical replication control, the overhead of replication is negligible even when applications mostly write and replication servers are widely distributed.\",\"PeriodicalId\":278535,\"journal\":{\"name\":\"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2007.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2007.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Replication Control in a Global File System
We develop a consistent mutable replication extension for NFSv4 tuned to meet the rigorous demands of large-scale data sharing in global collaborations. The system uses a hierarchical replication control protocol that dynamically elects a primary server at various granularities. Experimental evaluation indicates a substantial performance advantage over a single server system. With the introduction of the hierarchical replication control, the overhead of replication is negligible even when applications mostly write and replication servers are widely distributed.