A. Sleptchenko, T. Elmekkawy, H. Turan, S. Pokharel
{"title":"基于仿真的备件供应系统交叉训练策略粒子群优化","authors":"A. Sleptchenko, T. Elmekkawy, H. Turan, S. Pokharel","doi":"10.1109/ICACI.2017.7974486","DOIUrl":null,"url":null,"abstract":"We study a single location supply system for repairable spare parts. The system consists of a multi-server repair shop and inventory with ready-to-use spare parts. When a failed part is received, a new (or as-good-as-new) replacement part is sent back, and the failed part is forwarded to the repairshop. In the case of unavailability of spare parts, failed requests are backordered and fulfilled when a ready-for-use part of the same type is received from the repairshop. The repair shop has several multi-skilled parallel servers (technicians) that are capable of handling certain types of spares. In this paper, we propose a Particle Swarm Optimization heuristic combined with Discrete-Event Simulation for optimizing the cross-training policy (skill assignment scheme) while minimizing the total system cost (consisting of inventory costs, backorder penalty cost, server cost and skill cost).","PeriodicalId":260701,"journal":{"name":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simulation based particle swarm optimization of cross-training policies in spare parts supply systems\",\"authors\":\"A. Sleptchenko, T. Elmekkawy, H. Turan, S. Pokharel\",\"doi\":\"10.1109/ICACI.2017.7974486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a single location supply system for repairable spare parts. The system consists of a multi-server repair shop and inventory with ready-to-use spare parts. When a failed part is received, a new (or as-good-as-new) replacement part is sent back, and the failed part is forwarded to the repairshop. In the case of unavailability of spare parts, failed requests are backordered and fulfilled when a ready-for-use part of the same type is received from the repairshop. The repair shop has several multi-skilled parallel servers (technicians) that are capable of handling certain types of spares. In this paper, we propose a Particle Swarm Optimization heuristic combined with Discrete-Event Simulation for optimizing the cross-training policy (skill assignment scheme) while minimizing the total system cost (consisting of inventory costs, backorder penalty cost, server cost and skill cost).\",\"PeriodicalId\":260701,\"journal\":{\"name\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2017.7974486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2017.7974486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation based particle swarm optimization of cross-training policies in spare parts supply systems
We study a single location supply system for repairable spare parts. The system consists of a multi-server repair shop and inventory with ready-to-use spare parts. When a failed part is received, a new (or as-good-as-new) replacement part is sent back, and the failed part is forwarded to the repairshop. In the case of unavailability of spare parts, failed requests are backordered and fulfilled when a ready-for-use part of the same type is received from the repairshop. The repair shop has several multi-skilled parallel servers (technicians) that are capable of handling certain types of spares. In this paper, we propose a Particle Swarm Optimization heuristic combined with Discrete-Event Simulation for optimizing the cross-training policy (skill assignment scheme) while minimizing the total system cost (consisting of inventory costs, backorder penalty cost, server cost and skill cost).