皮层分割-一种快速变分几何方法

Roman Goldenberg, R. Kimmel, E. Rivlin, M. Rudzsky
{"title":"皮层分割-一种快速变分几何方法","authors":"Roman Goldenberg, R. Kimmel, E. Rivlin, M. Rudzsky","doi":"10.1109/VLSM.2001.938891","DOIUrl":null,"url":null,"abstract":"An automatic cortical gray matter segmentation from three-dimensional brain images (MR or CT) is a well known problem in medical image processing. We formulate it as a geometric variational problem for propagation of two coupled bounding surfaces. An efficient numerical scheme is used to implement the geodesic active surface model. Experimental results of cortex segmentation on real three-dimensional MR data are provided.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"37 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Cortex segmentation - a fast variational geometric approach\",\"authors\":\"Roman Goldenberg, R. Kimmel, E. Rivlin, M. Rudzsky\",\"doi\":\"10.1109/VLSM.2001.938891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automatic cortical gray matter segmentation from three-dimensional brain images (MR or CT) is a well known problem in medical image processing. We formulate it as a geometric variational problem for propagation of two coupled bounding surfaces. An efficient numerical scheme is used to implement the geodesic active surface model. Experimental results of cortex segmentation on real three-dimensional MR data are provided.\",\"PeriodicalId\":445975,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision\",\"volume\":\"37 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSM.2001.938891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

从三维脑图像(MR或CT)中自动分割皮层灰质是医学图像处理中一个众所周知的问题。我们将其表述为两个耦合边界面传播的几何变分问题。采用了一种有效的数值格式来实现测地线活动曲面模型。给出了在真实三维MR数据上进行皮层分割的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cortex segmentation - a fast variational geometric approach
An automatic cortical gray matter segmentation from three-dimensional brain images (MR or CT) is a well known problem in medical image processing. We formulate it as a geometric variational problem for propagation of two coupled bounding surfaces. An efficient numerical scheme is used to implement the geodesic active surface model. Experimental results of cortex segmentation on real three-dimensional MR data are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信