{"title":"超声图像中的目标边界检测","authors":"Moi Hoon Yap, E. Edirisinghe, H. Bez","doi":"10.1109/CRV.2006.51","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to boundary detection of regions-of-interest (ROI) in ultrasound images, more specifically applied to ultrasound breast images. In the proposed method, histogram equalization is used to preprocess the ultrasound images followed by a hybrid filtering stage that consists of a combination of a nonlinear diffusion filter and a linear filter. Subsequently the multifractal dimension is used to analyse the visually distinct areas of the ultrasound image. Finally, using different threshold values, region growing segmentation is used to the partition the image. The partition with the highest Radial Gradient Index (RGI) is selected as the lesion. A total of 200 images have been used in the analysis of the presented results. We compare the performance of our algorithm with two well known methods proposed by Kupinski et al. and Joo et al. We show that the proposed method performs better in solving the boundary detection problem in ultrasound images.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Object Boundary Detection in Ultrasound Images\",\"authors\":\"Moi Hoon Yap, E. Edirisinghe, H. Bez\",\"doi\":\"10.1109/CRV.2006.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to boundary detection of regions-of-interest (ROI) in ultrasound images, more specifically applied to ultrasound breast images. In the proposed method, histogram equalization is used to preprocess the ultrasound images followed by a hybrid filtering stage that consists of a combination of a nonlinear diffusion filter and a linear filter. Subsequently the multifractal dimension is used to analyse the visually distinct areas of the ultrasound image. Finally, using different threshold values, region growing segmentation is used to the partition the image. The partition with the highest Radial Gradient Index (RGI) is selected as the lesion. A total of 200 images have been used in the analysis of the presented results. We compare the performance of our algorithm with two well known methods proposed by Kupinski et al. and Joo et al. We show that the proposed method performs better in solving the boundary detection problem in ultrasound images.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
摘要
本文提出了一种超声图像感兴趣区域(ROI)边界检测的新方法,更具体地应用于超声乳房图像。该方法首先对超声图像进行直方图均衡化预处理,然后进行非线性扩散滤波器和线性滤波器的混合滤波。随后,利用多重分形维数分析超声图像中视觉上不同的区域。最后,利用不同的阈值对图像进行区域增长分割。选取径向梯度指数(RGI)最高的分区作为病灶。总共有200幅图像被用于分析所呈现的结果。我们将该算法的性能与Kupinski et al.和Joo et al.提出的两种众所周知的方法进行了比较。结果表明,该方法能较好地解决超声图像的边界检测问题。
This paper presents a novel approach to boundary detection of regions-of-interest (ROI) in ultrasound images, more specifically applied to ultrasound breast images. In the proposed method, histogram equalization is used to preprocess the ultrasound images followed by a hybrid filtering stage that consists of a combination of a nonlinear diffusion filter and a linear filter. Subsequently the multifractal dimension is used to analyse the visually distinct areas of the ultrasound image. Finally, using different threshold values, region growing segmentation is used to the partition the image. The partition with the highest Radial Gradient Index (RGI) is selected as the lesion. A total of 200 images have been used in the analysis of the presented results. We compare the performance of our algorithm with two well known methods proposed by Kupinski et al. and Joo et al. We show that the proposed method performs better in solving the boundary detection problem in ultrasound images.