{"title":"野外面部表情识别:一种循环一致的对抗性注意转移方法","authors":"Feifei Zhang, Tianzhu Zhang, Qi-rong Mao, Ling-yu Duan, Changsheng Xu","doi":"10.1145/3240508.3240574","DOIUrl":null,"url":null,"abstract":"Facial expression recognition (FER) is a very challenging problem due to different expressions under arbitrary poses. Most conventional approaches mainly perform FER under laboratory controlled environment. Different from existing methods, in this paper, we formulate the FER in the wild as a domain adaptation problem, and propose a novel auxiliary domain guided Cycle-consistent adversarial Attention Transfer model (CycleAT) for simultaneous facial image synthesis and facial expression recognition in the wild. The proposed model utilizes large-scale unlabeled web facial images as an auxiliary domain to reduce the gap between source domain and target domain based on generative adversarial networks (GAN) embedded with an effective attention transfer module, which enjoys several merits. First, the GAN-based method can automatically generate labeled facial images in the wild through harnessing information from labeled facial images in source domain and unlabeled web facial images in auxiliary domain. Second, the class-discriminative spatial attention maps from the classifier in source domain are leveraged to boost the performance of the classifier in target domain. Third, it can effectively preserve the structural consistency of local pixels and global attributes in the synthesized facial images through pixel cycle-consistency and discriminative loss. Quantitative and qualitative evaluations on two challenging in-the-wild datasets demonstrate that the proposed model performs favorably against state-of-the-art methods.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Facial Expression Recognition in the Wild: A Cycle-Consistent Adversarial Attention Transfer Approach\",\"authors\":\"Feifei Zhang, Tianzhu Zhang, Qi-rong Mao, Ling-yu Duan, Changsheng Xu\",\"doi\":\"10.1145/3240508.3240574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition (FER) is a very challenging problem due to different expressions under arbitrary poses. Most conventional approaches mainly perform FER under laboratory controlled environment. Different from existing methods, in this paper, we formulate the FER in the wild as a domain adaptation problem, and propose a novel auxiliary domain guided Cycle-consistent adversarial Attention Transfer model (CycleAT) for simultaneous facial image synthesis and facial expression recognition in the wild. The proposed model utilizes large-scale unlabeled web facial images as an auxiliary domain to reduce the gap between source domain and target domain based on generative adversarial networks (GAN) embedded with an effective attention transfer module, which enjoys several merits. First, the GAN-based method can automatically generate labeled facial images in the wild through harnessing information from labeled facial images in source domain and unlabeled web facial images in auxiliary domain. Second, the class-discriminative spatial attention maps from the classifier in source domain are leveraged to boost the performance of the classifier in target domain. Third, it can effectively preserve the structural consistency of local pixels and global attributes in the synthesized facial images through pixel cycle-consistency and discriminative loss. Quantitative and qualitative evaluations on two challenging in-the-wild datasets demonstrate that the proposed model performs favorably against state-of-the-art methods.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial Expression Recognition in the Wild: A Cycle-Consistent Adversarial Attention Transfer Approach
Facial expression recognition (FER) is a very challenging problem due to different expressions under arbitrary poses. Most conventional approaches mainly perform FER under laboratory controlled environment. Different from existing methods, in this paper, we formulate the FER in the wild as a domain adaptation problem, and propose a novel auxiliary domain guided Cycle-consistent adversarial Attention Transfer model (CycleAT) for simultaneous facial image synthesis and facial expression recognition in the wild. The proposed model utilizes large-scale unlabeled web facial images as an auxiliary domain to reduce the gap between source domain and target domain based on generative adversarial networks (GAN) embedded with an effective attention transfer module, which enjoys several merits. First, the GAN-based method can automatically generate labeled facial images in the wild through harnessing information from labeled facial images in source domain and unlabeled web facial images in auxiliary domain. Second, the class-discriminative spatial attention maps from the classifier in source domain are leveraged to boost the performance of the classifier in target domain. Third, it can effectively preserve the structural consistency of local pixels and global attributes in the synthesized facial images through pixel cycle-consistency and discriminative loss. Quantitative and qualitative evaluations on two challenging in-the-wild datasets demonstrate that the proposed model performs favorably against state-of-the-art methods.