稀疏无关子空间嵌入的下界

Yi Li, Mingmou Liu
{"title":"稀疏无关子空间嵌入的下界","authors":"Yi Li, Mingmou Liu","doi":"10.1145/3517804.3526224","DOIUrl":null,"url":null,"abstract":"An oblivious subspace embedding (OSE), characterized by parameters m,n,d,ε,δ, is a random matrix Π ∈ Rm x n such that for any d-dimensional subspace T ⊆ Rn, PrΠ[◨x ∈ T, (1-ε)|x|2 ≤ |Π x|2 ≤ (1+ε)|x|2] ≥ 1-δ. For ε and δ at most a small constant, we show that any OSE with one nonzero entry in each column must satisfy that m = Ω(d2/(ε2δ)), establishing the optimality of the classical Count-Sketch matrix. When an OSE has 1/(9ε) nonzero entries in each column, we show it must hold that m = Ω(εO(δ) d2), improving on the previous Ω(ε2 d2) lower bound due to Nelson and Nguyen (ICALP 2014).","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lower Bounds for Sparse Oblivious Subspace Embeddings\",\"authors\":\"Yi Li, Mingmou Liu\",\"doi\":\"10.1145/3517804.3526224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An oblivious subspace embedding (OSE), characterized by parameters m,n,d,ε,δ, is a random matrix Π ∈ Rm x n such that for any d-dimensional subspace T ⊆ Rn, PrΠ[◨x ∈ T, (1-ε)|x|2 ≤ |Π x|2 ≤ (1+ε)|x|2] ≥ 1-δ. For ε and δ at most a small constant, we show that any OSE with one nonzero entry in each column must satisfy that m = Ω(d2/(ε2δ)), establishing the optimality of the classical Count-Sketch matrix. When an OSE has 1/(9ε) nonzero entries in each column, we show it must hold that m = Ω(εO(δ) d2), improving on the previous Ω(ε2 d2) lower bound due to Nelson and Nguyen (ICALP 2014).\",\"PeriodicalId\":230606,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517804.3526224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3526224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

以参数m、n、d、ε、δ为特征的无关子空间嵌入(OSE)是一个随机矩阵Π∈Rm x n,使得对于任意d维子空间T∈Rn, PrΠ[x∈T, (1-ε)|x|2≤|Π x|2≤(1+ε)|x|2]≥1-δ。对于ε和δ最多为一个小常数,我们证明了任何在每列中有一个非零条目的OSE必须满足m = Ω(d2/(ε2δ)),从而建立了经典Count-Sketch矩阵的最优性。当一个OSE在每列中有1/(9ε)个非零条目时,我们证明它必须保持m = Ω(εO(δ) d2),改进了Nelson和Nguyen (ICALP 2014)之前的Ω(ε2 d2)下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds for Sparse Oblivious Subspace Embeddings
An oblivious subspace embedding (OSE), characterized by parameters m,n,d,ε,δ, is a random matrix Π ∈ Rm x n such that for any d-dimensional subspace T ⊆ Rn, PrΠ[◨x ∈ T, (1-ε)|x|2 ≤ |Π x|2 ≤ (1+ε)|x|2] ≥ 1-δ. For ε and δ at most a small constant, we show that any OSE with one nonzero entry in each column must satisfy that m = Ω(d2/(ε2δ)), establishing the optimality of the classical Count-Sketch matrix. When an OSE has 1/(9ε) nonzero entries in each column, we show it must hold that m = Ω(εO(δ) d2), improving on the previous Ω(ε2 d2) lower bound due to Nelson and Nguyen (ICALP 2014).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信