使用概率非负矩阵分解聚类基因表达数据

Belhassen Bayar, N. Bouaynaya, R. Shterenberg
{"title":"使用概率非负矩阵分解聚类基因表达数据","authors":"Belhassen Bayar, N. Bouaynaya, R. Shterenberg","doi":"10.1109/GENSiPS.2011.6169465","DOIUrl":null,"url":null,"abstract":"Non-negative matrix factorization (NMF) has proven to be a useful decomposition for multivariate data. Specifically, NMF appears to have advantages over other clustering methods, such as hierarchical clustering, for identification of distinct molecular patterns in gene expression profiles. The NMF algorithm, however, is deterministic. In particular, it does not take into account the noisy nature of the measured genomic signals. In this paper, we extend the NMF algorithm to the probabilistic case, where the data is viewed as a stochastic process. We show that the probabilistic NMF can be viewed as a weighted regularized matrix factorization problem, and derive the corresponding update rules. Our simulation results show that the probabilistic non-negative matrix factorization (PNMF) algorithm is more accurate and more robust than its deterministic homologue in clustering cancer subtypes in a leukemia microarray dataset.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering gene expression data using probabilistic non-negative matrix factorization\",\"authors\":\"Belhassen Bayar, N. Bouaynaya, R. Shterenberg\",\"doi\":\"10.1109/GENSiPS.2011.6169465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-negative matrix factorization (NMF) has proven to be a useful decomposition for multivariate data. Specifically, NMF appears to have advantages over other clustering methods, such as hierarchical clustering, for identification of distinct molecular patterns in gene expression profiles. The NMF algorithm, however, is deterministic. In particular, it does not take into account the noisy nature of the measured genomic signals. In this paper, we extend the NMF algorithm to the probabilistic case, where the data is viewed as a stochastic process. We show that the probabilistic NMF can be viewed as a weighted regularized matrix factorization problem, and derive the corresponding update rules. Our simulation results show that the probabilistic non-negative matrix factorization (PNMF) algorithm is more accurate and more robust than its deterministic homologue in clustering cancer subtypes in a leukemia microarray dataset.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非负矩阵分解(NMF)已被证明是一种有用的多变量数据分解方法。具体来说,NMF在识别基因表达谱中不同的分子模式方面似乎比其他聚类方法(如分层聚类)有优势。然而,NMF算法是确定性的。特别是,它没有考虑到所测基因组信号的噪声性质。在本文中,我们将NMF算法扩展到概率情况,其中数据被视为随机过程。我们证明了概率NMF可以看作是一个加权正则化矩阵分解问题,并推导了相应的更新规则。我们的模拟结果表明,概率非负矩阵分解(PNMF)算法在白血病微阵列数据集中的癌症亚型聚类中比其确定性同系物更准确,更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering gene expression data using probabilistic non-negative matrix factorization
Non-negative matrix factorization (NMF) has proven to be a useful decomposition for multivariate data. Specifically, NMF appears to have advantages over other clustering methods, such as hierarchical clustering, for identification of distinct molecular patterns in gene expression profiles. The NMF algorithm, however, is deterministic. In particular, it does not take into account the noisy nature of the measured genomic signals. In this paper, we extend the NMF algorithm to the probabilistic case, where the data is viewed as a stochastic process. We show that the probabilistic NMF can be viewed as a weighted regularized matrix factorization problem, and derive the corresponding update rules. Our simulation results show that the probabilistic non-negative matrix factorization (PNMF) algorithm is more accurate and more robust than its deterministic homologue in clustering cancer subtypes in a leukemia microarray dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信