从微阵列数据集推导最小最佳样本量:蒙特卡罗方法

Chengpeng Bi, M. Becker, J. Leeder
{"title":"从微阵列数据集推导最小最佳样本量:蒙特卡罗方法","authors":"Chengpeng Bi, M. Becker, J. Leeder","doi":"10.1109/CIBCB.2011.5948461","DOIUrl":null,"url":null,"abstract":"NCBI has been accumulating a large repository of microarray data sets, namely Gene Expression Omnibus (GEO). GEO is a great resource enabling one to pursue various biological and pathological questions. The question we ask here is: given a set of gene signatures and a classifier, what is the best minimum sample size in a clinical microarray research that can effectively distinguish different types of patient responses to a therapeutic drug. It is difficult to answer the question since the sample size for most microarray experiments stored in GEO is very limited. This paper presents a Monte Carlo approach to simulating the best minimum microarray sample size based on the available data sets. Support Vector Machine (SVM) is used as a classifier to compute prediction accuracy for different sample size. Then, a logistic function is applied to fit the relationship between sample size and accuracy whereby a theoretic minimum sample size can be derived.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Derivation of minimum best sample size from microarray data sets: A Monte Carlo approach\",\"authors\":\"Chengpeng Bi, M. Becker, J. Leeder\",\"doi\":\"10.1109/CIBCB.2011.5948461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NCBI has been accumulating a large repository of microarray data sets, namely Gene Expression Omnibus (GEO). GEO is a great resource enabling one to pursue various biological and pathological questions. The question we ask here is: given a set of gene signatures and a classifier, what is the best minimum sample size in a clinical microarray research that can effectively distinguish different types of patient responses to a therapeutic drug. It is difficult to answer the question since the sample size for most microarray experiments stored in GEO is very limited. This paper presents a Monte Carlo approach to simulating the best minimum microarray sample size based on the available data sets. Support Vector Machine (SVM) is used as a classifier to compute prediction accuracy for different sample size. Then, a logistic function is applied to fit the relationship between sample size and accuracy whereby a theoretic minimum sample size can be derived.\",\"PeriodicalId\":395505,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2011.5948461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

NCBI已经积累了大量的微阵列数据集,即基因表达综合数据库(GEO)。GEO是一个伟大的资源,使人们能够追求各种生物学和病理学问题。我们在这里提出的问题是:给定一组基因特征和分类器,在临床微阵列研究中,能够有效区分不同类型患者对治疗药物反应的最佳最小样本量是多少?由于存储在GEO中的大多数微阵列实验的样本量非常有限,因此很难回答这个问题。本文提出了一种蒙特卡罗方法来模拟基于可用数据集的最佳最小微阵列样本大小。使用支持向量机(SVM)作为分类器来计算不同样本量下的预测精度。然后,应用逻辑函数拟合样本量与精度之间的关系,从而推导出理论最小样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of minimum best sample size from microarray data sets: A Monte Carlo approach
NCBI has been accumulating a large repository of microarray data sets, namely Gene Expression Omnibus (GEO). GEO is a great resource enabling one to pursue various biological and pathological questions. The question we ask here is: given a set of gene signatures and a classifier, what is the best minimum sample size in a clinical microarray research that can effectively distinguish different types of patient responses to a therapeutic drug. It is difficult to answer the question since the sample size for most microarray experiments stored in GEO is very limited. This paper presents a Monte Carlo approach to simulating the best minimum microarray sample size based on the available data sets. Support Vector Machine (SVM) is used as a classifier to compute prediction accuracy for different sample size. Then, a logistic function is applied to fit the relationship between sample size and accuracy whereby a theoretic minimum sample size can be derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信