{"title":"从微阵列数据集推导最小最佳样本量:蒙特卡罗方法","authors":"Chengpeng Bi, M. Becker, J. Leeder","doi":"10.1109/CIBCB.2011.5948461","DOIUrl":null,"url":null,"abstract":"NCBI has been accumulating a large repository of microarray data sets, namely Gene Expression Omnibus (GEO). GEO is a great resource enabling one to pursue various biological and pathological questions. The question we ask here is: given a set of gene signatures and a classifier, what is the best minimum sample size in a clinical microarray research that can effectively distinguish different types of patient responses to a therapeutic drug. It is difficult to answer the question since the sample size for most microarray experiments stored in GEO is very limited. This paper presents a Monte Carlo approach to simulating the best minimum microarray sample size based on the available data sets. Support Vector Machine (SVM) is used as a classifier to compute prediction accuracy for different sample size. Then, a logistic function is applied to fit the relationship between sample size and accuracy whereby a theoretic minimum sample size can be derived.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Derivation of minimum best sample size from microarray data sets: A Monte Carlo approach\",\"authors\":\"Chengpeng Bi, M. Becker, J. Leeder\",\"doi\":\"10.1109/CIBCB.2011.5948461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NCBI has been accumulating a large repository of microarray data sets, namely Gene Expression Omnibus (GEO). GEO is a great resource enabling one to pursue various biological and pathological questions. The question we ask here is: given a set of gene signatures and a classifier, what is the best minimum sample size in a clinical microarray research that can effectively distinguish different types of patient responses to a therapeutic drug. It is difficult to answer the question since the sample size for most microarray experiments stored in GEO is very limited. This paper presents a Monte Carlo approach to simulating the best minimum microarray sample size based on the available data sets. Support Vector Machine (SVM) is used as a classifier to compute prediction accuracy for different sample size. Then, a logistic function is applied to fit the relationship between sample size and accuracy whereby a theoretic minimum sample size can be derived.\",\"PeriodicalId\":395505,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2011.5948461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Derivation of minimum best sample size from microarray data sets: A Monte Carlo approach
NCBI has been accumulating a large repository of microarray data sets, namely Gene Expression Omnibus (GEO). GEO is a great resource enabling one to pursue various biological and pathological questions. The question we ask here is: given a set of gene signatures and a classifier, what is the best minimum sample size in a clinical microarray research that can effectively distinguish different types of patient responses to a therapeutic drug. It is difficult to answer the question since the sample size for most microarray experiments stored in GEO is very limited. This paper presents a Monte Carlo approach to simulating the best minimum microarray sample size based on the available data sets. Support Vector Machine (SVM) is used as a classifier to compute prediction accuracy for different sample size. Then, a logistic function is applied to fit the relationship between sample size and accuracy whereby a theoretic minimum sample size can be derived.