{"title":"Banach空间的单位球上的弱一致连续多项式","authors":"K. Mikkor","doi":"10.3176/phys.math.2006.1.02","DOIUrl":null,"url":null,"abstract":"We prove quantitative strengthenings of results on polynomials that are weakly uniformly continuous on the unit ball of a Banach space due to Aron, Lindstrom, Ruess, and Ryan (Proc. Amer. Math. Soc., 1999, 127, 1119-1125) and to Toma (Aplicacoes holomorfas e polinomios� -continuos. 1993). Our method is based on the uniform factorization of compact sets of compact operators.","PeriodicalId":308961,"journal":{"name":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On polynomials that are weakly uniformly continuous on the unit ball of a Banach space\",\"authors\":\"K. Mikkor\",\"doi\":\"10.3176/phys.math.2006.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove quantitative strengthenings of results on polynomials that are weakly uniformly continuous on the unit ball of a Banach space due to Aron, Lindstrom, Ruess, and Ryan (Proc. Amer. Math. Soc., 1999, 127, 1119-1125) and to Toma (Aplicacoes holomorfas e polinomios� -continuos. 1993). Our method is based on the uniform factorization of compact sets of compact operators.\",\"PeriodicalId\":308961,\"journal\":{\"name\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3176/phys.math.2006.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Estonian Academy of Sciences. Physics. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3176/phys.math.2006.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们证明了Aron, Lindstrom, Ruess, and Ryan (Proc. Amer)对Banach空间单位球上弱一致连续多项式结果的定量强化。数学。Soc。[j] .中国农业科学,1999,27,1119-1125)和to Toma(应用holomorfas e polinomios -continuos)。1993)。我们的方法是基于紧算子的紧集的一致分解。
On polynomials that are weakly uniformly continuous on the unit ball of a Banach space
We prove quantitative strengthenings of results on polynomials that are weakly uniformly continuous on the unit ball of a Banach space due to Aron, Lindstrom, Ruess, and Ryan (Proc. Amer. Math. Soc., 1999, 127, 1119-1125) and to Toma (Aplicacoes holomorfas e polinomios� -continuos. 1993). Our method is based on the uniform factorization of compact sets of compact operators.