基于深度学习的数字全息相位成像

Chencen Xiong, Zhenbo Ren, Jianglei Di, Jianlin Zhao
{"title":"基于深度学习的数字全息相位成像","authors":"Chencen Xiong, Zhenbo Ren, Jianglei Di, Jianlin Zhao","doi":"10.1364/dh.2022.w5a.52","DOIUrl":null,"url":null,"abstract":"Deep learning has been widely employed for digital holographic reconstruction. In this paper, we present a learning-based method for phase imaging from digital holograms without complicated and notorious operations such as phase unwrapping.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase imaging for digital holography with deep learning\",\"authors\":\"Chencen Xiong, Zhenbo Ren, Jianglei Di, Jianlin Zhao\",\"doi\":\"10.1364/dh.2022.w5a.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has been widely employed for digital holographic reconstruction. In this paper, we present a learning-based method for phase imaging from digital holograms without complicated and notorious operations such as phase unwrapping.\",\"PeriodicalId\":227456,\"journal\":{\"name\":\"Digital Holography and 3-D Imaging 2022\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and 3-D Imaging 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/dh.2022.w5a.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.w5a.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在数字全息重建中得到了广泛的应用。在本文中,我们提出了一种基于学习的方法来从数字全息图中进行相位成像,而不需要复杂和臭名昭著的操作,如相位展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase imaging for digital holography with deep learning
Deep learning has been widely employed for digital holographic reconstruction. In this paper, we present a learning-based method for phase imaging from digital holograms without complicated and notorious operations such as phase unwrapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信