一种gpu加速的两阶段视觉匹配管道,用于图像和视频检索

Hannes Fassold, H. Stiegler, Jakub Rosner, M. Thaler, W. Bailer
{"title":"一种gpu加速的两阶段视觉匹配管道,用于图像和视频检索","authors":"Hannes Fassold, H. Stiegler, Jakub Rosner, M. Thaler, W. Bailer","doi":"10.1109/CBMI.2015.7153620","DOIUrl":null,"url":null,"abstract":"We propose a two stage visual matching pipeline including a first step using VLAD signatures for filtering results, and a second step which reranks the top results using raw matching of SIFT descriptors. This enables adjusting the tradeoff between high computational cost of matching local descriptors and the insufficient accuracy of compact signatures in many application scenarios. We describe GPU accelerated extraction and matching algorithms for SIFT, which result in a speedup factor of at least 4. The VLAD filtering step reduces the number of images/frames for which the local descriptors need to be matched, thus speeding up retrieval by an additional factor of 9-10 without sacrificing mean average precision over full raw descriptor matching.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A GPU-accelerated two stage visual matching pipeline for image and video retrieval\",\"authors\":\"Hannes Fassold, H. Stiegler, Jakub Rosner, M. Thaler, W. Bailer\",\"doi\":\"10.1109/CBMI.2015.7153620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a two stage visual matching pipeline including a first step using VLAD signatures for filtering results, and a second step which reranks the top results using raw matching of SIFT descriptors. This enables adjusting the tradeoff between high computational cost of matching local descriptors and the insufficient accuracy of compact signatures in many application scenarios. We describe GPU accelerated extraction and matching algorithms for SIFT, which result in a speedup factor of at least 4. The VLAD filtering step reduces the number of images/frames for which the local descriptors need to be matched, thus speeding up retrieval by an additional factor of 9-10 without sacrificing mean average precision over full raw descriptor matching.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个两阶段的视觉匹配管道,包括第一步使用VLAD签名过滤结果,第二步使用SIFT描述符的原始匹配对顶级结果进行重新排序。在许多应用场景中,这可以调整匹配局部描述符的高计算成本和紧凑签名的不足准确性之间的权衡。我们描述了GPU加速的SIFT提取和匹配算法,其加速系数至少为4。VLAD过滤步骤减少了需要匹配局部描述符的图像/帧的数量,从而在不牺牲完整原始描述符匹配的平均精度的情况下,将检索速度提高了9-10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GPU-accelerated two stage visual matching pipeline for image and video retrieval
We propose a two stage visual matching pipeline including a first step using VLAD signatures for filtering results, and a second step which reranks the top results using raw matching of SIFT descriptors. This enables adjusting the tradeoff between high computational cost of matching local descriptors and the insufficient accuracy of compact signatures in many application scenarios. We describe GPU accelerated extraction and matching algorithms for SIFT, which result in a speedup factor of at least 4. The VLAD filtering step reduces the number of images/frames for which the local descriptors need to be matched, thus speeding up retrieval by an additional factor of 9-10 without sacrificing mean average precision over full raw descriptor matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信