基于水下机器人视觉的海洋小目标实时检测方法

Fengqiang Xu, Xueyan Ding, Jinjia Peng, Guoliang Yuan, Yafei Wang, Jun Zhang, Xianping Fu
{"title":"基于水下机器人视觉的海洋小目标实时检测方法","authors":"Fengqiang Xu, Xueyan Ding, Jinjia Peng, Guoliang Yuan, Yafei Wang, Jun Zhang, Xianping Fu","doi":"10.1109/OCEANSKOBE.2018.8558804","DOIUrl":null,"url":null,"abstract":"Detection and counting small objects using under-water robot draw an appealing attention because of its urgent demands in marine aquaculture. Because this challenge problem must be solved before the underwater robot can be used to catch seafood in practice instead of diver. This paper proposed a novel method using Faster R-CNN and kernelized correlation filter (KCF) tracking algorithm to detect seafood objects, such as sea cucumber, sea urchin, and scallop and so on in real time. Firstly, we trained an accurate and stable Faster R-CNN detector with VGG model using underwater image database, which is built by ourselves. Next, we recognized and tracked the seafood objects in order to fetch them using underwater robot vision in naturalistic ocean environment. The experimental results show the proposed method can recognized and catch seafood in real time using our integrated underwater robot.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Real-Time Detecting Method of Marine Small Object with Underwater Robot Vision\",\"authors\":\"Fengqiang Xu, Xueyan Ding, Jinjia Peng, Guoliang Yuan, Yafei Wang, Jun Zhang, Xianping Fu\",\"doi\":\"10.1109/OCEANSKOBE.2018.8558804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and counting small objects using under-water robot draw an appealing attention because of its urgent demands in marine aquaculture. Because this challenge problem must be solved before the underwater robot can be used to catch seafood in practice instead of diver. This paper proposed a novel method using Faster R-CNN and kernelized correlation filter (KCF) tracking algorithm to detect seafood objects, such as sea cucumber, sea urchin, and scallop and so on in real time. Firstly, we trained an accurate and stable Faster R-CNN detector with VGG model using underwater image database, which is built by ourselves. Next, we recognized and tracked the seafood objects in order to fetch them using underwater robot vision in naturalistic ocean environment. The experimental results show the proposed method can recognized and catch seafood in real time using our integrated underwater robot.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8558804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8558804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用水下机器人对微小物体的检测和计数在海洋水产养殖中的迫切需求引起了人们的关注。因为这个挑战问题必须解决,水下机器人才能代替潜水员在实践中捕捉海鲜。本文提出了一种利用Faster R-CNN和kernel correlation filter (KCF)跟踪算法对海产品目标进行实时检测的新方法,如海参、海胆、扇贝等。首先,我们利用自己构建的水下图像数据库,用VGG模型训练出一个准确稳定的Faster R-CNN检测器。接下来,我们对海产品目标进行识别和跟踪,利用水下机器人视觉在自然的海洋环境中提取海产品目标。实验结果表明,该方法可以在集成水下机器人上实现对海产品的实时识别和捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Detecting Method of Marine Small Object with Underwater Robot Vision
Detection and counting small objects using under-water robot draw an appealing attention because of its urgent demands in marine aquaculture. Because this challenge problem must be solved before the underwater robot can be used to catch seafood in practice instead of diver. This paper proposed a novel method using Faster R-CNN and kernelized correlation filter (KCF) tracking algorithm to detect seafood objects, such as sea cucumber, sea urchin, and scallop and so on in real time. Firstly, we trained an accurate and stable Faster R-CNN detector with VGG model using underwater image database, which is built by ourselves. Next, we recognized and tracked the seafood objects in order to fetch them using underwater robot vision in naturalistic ocean environment. The experimental results show the proposed method can recognized and catch seafood in real time using our integrated underwater robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信