{"title":"logCalabi-Yau曲面的同调镜像对称","authors":"P. Hacking, Ailsa Keating","doi":"10.2140/gt.2022.26.3747","DOIUrl":null,"url":null,"abstract":"Given a log Calabi-Yau surface $Y$ with maximal boundary $D$ and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration $w: M \\to \\mathbb{C}$, where $M$ is a Weinstein four-manifold, such that the directed Fukaya category of $w$ is isomorphic to $D^b \\text{Coh}(Y)$, and the wrapped Fukaya category $\\mathcal{W} (M)$ is isomorphic to $D^b \\text{Coh}(Y \\backslash D)$. We construct an explicit isomorphism between $M$ and the total space of the almost-toric fibration arising in the work of Gross-Hacking-Keel; when $D$ is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of $D$. We also match our mirror potential $w$ with existing constructions for a range of special cases of $(Y,D)$, notably in work of Auroux-Katzarkov-Orlov and Abouzaid.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Homological mirror symmetry for log\\nCalabi–Yau surfaces\",\"authors\":\"P. Hacking, Ailsa Keating\",\"doi\":\"10.2140/gt.2022.26.3747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a log Calabi-Yau surface $Y$ with maximal boundary $D$ and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration $w: M \\\\to \\\\mathbb{C}$, where $M$ is a Weinstein four-manifold, such that the directed Fukaya category of $w$ is isomorphic to $D^b \\\\text{Coh}(Y)$, and the wrapped Fukaya category $\\\\mathcal{W} (M)$ is isomorphic to $D^b \\\\text{Coh}(Y \\\\backslash D)$. We construct an explicit isomorphism between $M$ and the total space of the almost-toric fibration arising in the work of Gross-Hacking-Keel; when $D$ is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of $D$. We also match our mirror potential $w$ with existing constructions for a range of special cases of $(Y,D)$, notably in work of Auroux-Katzarkov-Orlov and Abouzaid.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.3747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
摘要
给定一个具有极大边界$D$的log Calabi-Yau曲面$Y$和不同的复杂结构,我们解释了如何构造一个镜像Lefschetz纤维$w: M \到$ mathbb{C}$,其中$M$是一个Weinstein四流形,使得$w$的有向Fukaya范畴同构于$D^b \text{Coh}(Y)$,而包装的Fukaya范畴$\mathcal{w}(M)$同构于$D^b \text{Coh}(Y \反斜线D)$。我们构造了$M$与Gross-Hacking-Keel工作中产生的近环振动的总空间之间的显同构;当$D$为负定时,预期这是$D$的双尖平滑的米尔诺纤维。我们还将我们的镜像势$w$与一系列特殊情况$(Y,D)$的现有结构相匹配,特别是在Auroux-Katzarkov-Orlov和Abouzaid的工作中。
Homological mirror symmetry for log
Calabi–Yau surfaces
Given a log Calabi-Yau surface $Y$ with maximal boundary $D$ and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration $w: M \to \mathbb{C}$, where $M$ is a Weinstein four-manifold, such that the directed Fukaya category of $w$ is isomorphic to $D^b \text{Coh}(Y)$, and the wrapped Fukaya category $\mathcal{W} (M)$ is isomorphic to $D^b \text{Coh}(Y \backslash D)$. We construct an explicit isomorphism between $M$ and the total space of the almost-toric fibration arising in the work of Gross-Hacking-Keel; when $D$ is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of $D$. We also match our mirror potential $w$ with existing constructions for a range of special cases of $(Y,D)$, notably in work of Auroux-Katzarkov-Orlov and Abouzaid.