增加多学科小组会议与临床决策支持系统,以分流乳腺癌患者在英国

Martha Martin, H. Kristeleit, D. Ruta, C. Karampera, Rezzan Hekmat, W. Felix, Bertha InHout, A. Kothari, M. Kazmi, Lesedi Ledwaba-Chapman, A. Clery, Yanzhong Wang, B. Coker, A. Preininger, Roy Vergis, Tom Eggebraaten, Christopher T. Gloe, Irene Dankwa-Mullan Irene, G. Jackson, A. Rigg
{"title":"增加多学科小组会议与临床决策支持系统,以分流乳腺癌患者在英国","authors":"Martha Martin, H. Kristeleit, D. Ruta, C. Karampera, Rezzan Hekmat, W. Felix, Bertha InHout, A. Kothari, M. Kazmi, Lesedi Ledwaba-Chapman, A. Clery, Yanzhong Wang, B. Coker, A. Preininger, Roy Vergis, Tom Eggebraaten, Christopher T. Gloe, Irene Dankwa-Mullan Irene, G. Jackson, A. Rigg","doi":"10.2217/fmai-2023-0001","DOIUrl":null,"url":null,"abstract":"Aim: Multidisciplinary team (MDT) meetings struggle with increasing caseloads. Recent National Health Service (NHS) guidance proposes that patients are triaged for ‘no discussion at MDT’. We examine whether an artificial intelligence (AI)-based clinical decision-support system (CDSS) can support human triage. Methods: Local best practice breast cancer MDT treatment decisions were compared with treatment decisions made by: two, two-person MDT triage teams with and without the CDSS; the CDSS acting ‘alone’; and the historical MDT. A decision tree on whether to triage patients to the CDSS or the MDT was created using supervised learning algorithms. Results: When localized, the CDSS achieved high concordance with local best practice (treatment plan decisions: 92% CDSS vs 96% team 1 vs 92% team 2, not significant [NS]; treatment type decisions: 89% CDSS vs 93% team 1 vs 82% team 2, NS). Using a decision tree 40.2% of cases can be correctly triaged to the CDSS for a treatment plan, and 34.6% for treatment type recommendations. Conclusion: AI-enabled CDSSs can potentially reduce the clinical workload for a breast cancer MDT by up to 40%. Before routine deployment they need to be appropriately localized and validated in prospective studies to evaluate clinical effectiveness and economic impact.","PeriodicalId":154874,"journal":{"name":"Future Medicine AI","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentation of a multidisciplinary team meeting with a clinical decision support system to triage breast cancer patients in the United Kingdom\",\"authors\":\"Martha Martin, H. Kristeleit, D. Ruta, C. Karampera, Rezzan Hekmat, W. Felix, Bertha InHout, A. Kothari, M. Kazmi, Lesedi Ledwaba-Chapman, A. Clery, Yanzhong Wang, B. Coker, A. Preininger, Roy Vergis, Tom Eggebraaten, Christopher T. Gloe, Irene Dankwa-Mullan Irene, G. Jackson, A. Rigg\",\"doi\":\"10.2217/fmai-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Multidisciplinary team (MDT) meetings struggle with increasing caseloads. Recent National Health Service (NHS) guidance proposes that patients are triaged for ‘no discussion at MDT’. We examine whether an artificial intelligence (AI)-based clinical decision-support system (CDSS) can support human triage. Methods: Local best practice breast cancer MDT treatment decisions were compared with treatment decisions made by: two, two-person MDT triage teams with and without the CDSS; the CDSS acting ‘alone’; and the historical MDT. A decision tree on whether to triage patients to the CDSS or the MDT was created using supervised learning algorithms. Results: When localized, the CDSS achieved high concordance with local best practice (treatment plan decisions: 92% CDSS vs 96% team 1 vs 92% team 2, not significant [NS]; treatment type decisions: 89% CDSS vs 93% team 1 vs 82% team 2, NS). Using a decision tree 40.2% of cases can be correctly triaged to the CDSS for a treatment plan, and 34.6% for treatment type recommendations. Conclusion: AI-enabled CDSSs can potentially reduce the clinical workload for a breast cancer MDT by up to 40%. Before routine deployment they need to be appropriately localized and validated in prospective studies to evaluate clinical effectiveness and economic impact.\",\"PeriodicalId\":154874,\"journal\":{\"name\":\"Future Medicine AI\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Medicine AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/fmai-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Medicine AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/fmai-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:多学科团队(MDT)会议与不断增加的病例负荷作斗争。最近的国民保健服务(NHS)指南建议,对患者进行分类,“在MDT时不讨论”。我们研究了基于人工智能(AI)的临床决策支持系统(CDSS)是否可以支持人类分诊。方法:将当地最佳实践乳腺癌MDT治疗决策与两组、两组MDT分诊小组在有和没有CDSS的情况下做出的治疗决策进行比较;CDSS“单独”行动;和历史MDT。使用监督学习算法创建了一个关于是否将患者分类到CDSS或MDT的决策树。结果:当定位时,CDSS与当地最佳实践的一致性很高(治疗方案决策:CDSS 92% vs组1 96% vs组2 92%,无统计学意义[NS];治疗类型决定:CDSS组89% vs组1 93% vs组2 82%,NS)。使用决策树,40.2%的病例可以正确分类到CDSS的治疗计划,34.6%的病例可以正确分类到治疗类型推荐。结论:人工智能支持的cdss可以潜在地将乳腺癌MDT的临床工作量减少多达40%。在常规部署之前,它们需要适当地定位并在前瞻性研究中进行验证,以评估临床效果和经济影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmentation of a multidisciplinary team meeting with a clinical decision support system to triage breast cancer patients in the United Kingdom
Aim: Multidisciplinary team (MDT) meetings struggle with increasing caseloads. Recent National Health Service (NHS) guidance proposes that patients are triaged for ‘no discussion at MDT’. We examine whether an artificial intelligence (AI)-based clinical decision-support system (CDSS) can support human triage. Methods: Local best practice breast cancer MDT treatment decisions were compared with treatment decisions made by: two, two-person MDT triage teams with and without the CDSS; the CDSS acting ‘alone’; and the historical MDT. A decision tree on whether to triage patients to the CDSS or the MDT was created using supervised learning algorithms. Results: When localized, the CDSS achieved high concordance with local best practice (treatment plan decisions: 92% CDSS vs 96% team 1 vs 92% team 2, not significant [NS]; treatment type decisions: 89% CDSS vs 93% team 1 vs 82% team 2, NS). Using a decision tree 40.2% of cases can be correctly triaged to the CDSS for a treatment plan, and 34.6% for treatment type recommendations. Conclusion: AI-enabled CDSSs can potentially reduce the clinical workload for a breast cancer MDT by up to 40%. Before routine deployment they need to be appropriately localized and validated in prospective studies to evaluate clinical effectiveness and economic impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信