防止对距离继电器的误跳闸网络攻击:一种深度学习方法

Yew Meng Khaw, A. Jahromi, M. Arani, D. Kundur, S. Sanner, Marthe Kassouf
{"title":"防止对距离继电器的误跳闸网络攻击:一种深度学习方法","authors":"Yew Meng Khaw, A. Jahromi, M. Arani, D. Kundur, S. Sanner, Marthe Kassouf","doi":"10.1109/SmartGridComm.2019.8909810","DOIUrl":null,"url":null,"abstract":"The false tripping of circuit breakers initiated by cyberattacks on protective relays is a growing concern in power systems. This is of high importance because multiple false equipment tripping initiated by coordinated cyberattacks on protective relays can cause large scale disturbance in power systems and potentially lead to cascading failures and blackouts. In this paper, a deep learning based autoencoder is employed to identify anomalous voltage and current data injection to distance protection relays. The autoencoder is first trained with current and voltage data sets representing three-phase faults in zone 1 of a distance relay using a benchmark test system. The autoencoder is then employed to identify anomalies in voltage and current data to prevent false tripping commands by the distance relay. The simulation results verify the capability of the autoencoder model to extract signatures of three-phase faults in the intended zone of a protective relay and detect three-phase fault current and voltage data that do not contain these signatures with high accuracy.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Preventing False Tripping Cyberattacks Against Distance Relays: A Deep Learning Approach\",\"authors\":\"Yew Meng Khaw, A. Jahromi, M. Arani, D. Kundur, S. Sanner, Marthe Kassouf\",\"doi\":\"10.1109/SmartGridComm.2019.8909810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The false tripping of circuit breakers initiated by cyberattacks on protective relays is a growing concern in power systems. This is of high importance because multiple false equipment tripping initiated by coordinated cyberattacks on protective relays can cause large scale disturbance in power systems and potentially lead to cascading failures and blackouts. In this paper, a deep learning based autoencoder is employed to identify anomalous voltage and current data injection to distance protection relays. The autoencoder is first trained with current and voltage data sets representing three-phase faults in zone 1 of a distance relay using a benchmark test system. The autoencoder is then employed to identify anomalies in voltage and current data to prevent false tripping commands by the distance relay. The simulation results verify the capability of the autoencoder model to extract signatures of three-phase faults in the intended zone of a protective relay and detect three-phase fault current and voltage data that do not contain these signatures with high accuracy.\",\"PeriodicalId\":377150,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2019.8909810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在电力系统中,由网络攻击引起的断路器误跳闸问题日益受到关注。这一点非常重要,因为通过对保护继电器的协同网络攻击引发的多次假设备跳闸可能会对电力系统造成大规模干扰,并可能导致级联故障和停电。本文采用一种基于深度学习的自编码器来识别距离保护继电器中注入的异常电压和电流数据。自动编码器首先使用基准测试系统对代表距离继电器1区三相故障的电流和电压数据集进行训练。然后使用自动编码器识别电压和电流数据中的异常情况,以防止距离继电器的误跳闸命令。仿真结果验证了自编码器模型提取保护继电器预定区域三相故障特征的能力,并以较高的精度检测不包含这些特征的三相故障电流和电压数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preventing False Tripping Cyberattacks Against Distance Relays: A Deep Learning Approach
The false tripping of circuit breakers initiated by cyberattacks on protective relays is a growing concern in power systems. This is of high importance because multiple false equipment tripping initiated by coordinated cyberattacks on protective relays can cause large scale disturbance in power systems and potentially lead to cascading failures and blackouts. In this paper, a deep learning based autoencoder is employed to identify anomalous voltage and current data injection to distance protection relays. The autoencoder is first trained with current and voltage data sets representing three-phase faults in zone 1 of a distance relay using a benchmark test system. The autoencoder is then employed to identify anomalies in voltage and current data to prevent false tripping commands by the distance relay. The simulation results verify the capability of the autoencoder model to extract signatures of three-phase faults in the intended zone of a protective relay and detect three-phase fault current and voltage data that do not contain these signatures with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信